停课不停学 | 旷视×北大《深度学习实践》课程全面开放!

旷视研究院联合北京大学数学科学学院机器学习实验室开设的《深度学习实践》全套课程(视频+PPT,共计28课时)今日正式全面上线,让你足不出户也能享有高水平的教学资源。

“与其疫情宅家玩游戏,不如家里蹲大学把课上。”疫情期间,我们每日听到的最多的信息之一可能就是号召大家在线坚持学习。不过,在左有“名师授课”、右有“速成深度学习”,多重信息的围攻之下,大部分人最终还是选择了那条无数“英雄”选择的道路——“收藏+下次一定”,重回电子虚拟世界,麻痹自己,蹉跎人生。

怎么办?旷视研究院为你支招!

今日,旷视研究院联合北京大学数学科学学院机器学习实验室开设的《深度学习实践》全套课程(视频+PPT,共计28课时)全面向社会免费开放!从深度学习基础理论到计算机视觉实践,由旷视首席科学家兼研究院长孙剑,及身经百战的研发总监、资深研究员亲身授课,、及身经百战的研发总监、资深研究员亲身授课,真正将高水平深度学习课程带给大家。知识全面、循循善诱、透彻又不枯燥是本课程最大的特点。

《深度学习实践》是旷视研究院联合顶尖高校开设的系列深度学习精品课程之一。作为旷视的研发中心,旷视研究院一直基于自研的人工智能算法平台Brain++和深度学习框架MegEngine开展最前沿学术、产业技术研究、交流,累计收获27项世界冠军;并实现在个人物联网、城市物联网、供应链物联网三大领域的应用落地。值得一提的是,旷视后续将对Brain++及其核心框架、平台进行开源、开放,强大的算力、SOTA模型、框架资源任你用,敬请期待~

此次课程录制于2017年秋季旷视研究院在北京大学授课期间,已连续开设3年,后续将开放更多精彩课程供同学们学习、研究。

课程大纲

  • Lecture 1: Introduction to Computer Vision and Deep Learning

  • Lecture 2: Math In Deep Learning

  • Lecture 3: Neural Network Basics & Architecture Design

  • Lecture 4: Introduction to Computation Technologies in Deep Learning

  • Lecture 5: Neural Network Approximation

  • Lecture 6: Modern Object Detection

  • Lecture 7: Scene Text Detection and Recognition

  • Lecture 8: Image Segmentation

  • Lecture 9: Recurrent Neural Networks

  • Lecture 10: Introduction to Generative Models (and GANs)

  • Lecture 11: Person Re-Identification

  • Lecture 12: Shape from X

  • Lecture 13: Visual Object Tracking

  • Lecture 14: Neural Network in Computer Graphics

课程传送门:

课程地址:请戳链接

PPT:进入“旷视研究院”微信公众号后台,回复关键词“深度学习实践PPT”即可获取下载链接。

 

最后讲个真实的故事。

1665年,牛顿在剑桥三一学院就读期间,伦敦发生大瘟疫,造成数万人死亡。牛顿回家自我隔离,亲戚也不走,聚会也不去。

但正是这段清浄的时间,让他有机会思考数学、光学、力学的问题,硕果累累,成功创立了二项式定理和光的分解,确立了牛顿第一、第二定律和引力定律的基本思想……


停课不停学 | 旷视×北大《深度学习实践》课程全面开放!

恩?仿佛听到有人在谈论我?

祝大家身体健康,少出门、多运动,提高免疫力的同时也不要忘了加倍努力学习思考哦~


雷锋网(公众号:雷锋网)雷锋网雷锋网

雷锋网版权文章,未经授权禁止转载。详情见转载须知

停课不停学 | 旷视×北大《深度学习实践》课程全面开放!

(完)