星河研究院:在自动驾驶领域到底是做青蛙还是做天鹅?(下)

雷锋网(公众号:雷锋网)「新智造」按:本文作者星河研究院分析师吴极,关注人工智能、物联网、机器人等前沿科技领域,希望通过专业洞察助推产业发展。在上篇文章《星河研究院:在自动驾驶领域到底是做青蛙还是做天鹅?(上)》中吴极分享了关于无人驾驶技术硬件设备方面的研究,本文中则是关于软件技术及未来的探讨。新智造已获取授权。新智造作为雷锋网旗下栏目,关注智能时代的创新与创造,目标是找到哪个领域还有值得创业和投资的机会。

自动驾驶是目前汽车产业乃至科技行业中受关注度最高的技术之一,此前A16Z的合伙人Frank Chen便在一场活动中讲到了对自动驾驶技术产业链,以及对未来在自动驾驶技术影响下的社会与经济等多方面变化的看法。借着他的观点,星河研究院吴极又增加了一部分内容与分析,我们今天就来探讨一下,自动驾驶领域的软件技术及未来,准备好了吗?     

自动驾驶汽车在软件方面的需求

除了上述对硬件的需求外,自动驾驶技术更离不开软件方面的突破。高精度地图是实现自动驾驶的基础资源,而机器学习与工程算法则是使高精度地图、传感器与V2X设施所获得的数据真正实现价值的手段。

1. 高精度预计算地图,垄断 vs 竞争

现在每个人出行都会用谷歌地图、苹果地图、百度地图及高德等产品,并且他们都有一个不错的准确度令我们在城市中可以便捷的通行。但令人类用户满意的地图精度距离满足自动驾驶汽车的需求还很远,因为他缺乏了路面上有几条车道、车道的边缘位置、隔离带与路障位置等极为具体的信息。

因此给自动驾驶汽车开发其专用的高精度地图便成为了必不可少的任务。国内外较大的地图提供商目前都已经在高清地图领域展开了积极的行动,意图尽快的占领自动驾驶汽车用地图市场更多的份额。

高清地图服务商一般先要使用类似于谷歌街景车的技术,用车顶上的高清相机、雷达等设备把周围环境全部扫描记录,再通过算法优化最终得到厘米级别的地图数据。

星河研究院:在自动驾驶领域到底是做青蛙还是做天鹅?(下)

HERE生产高清地图的策略与Google类似,这两家公司目前都是一次性采集一整个街区的数据。HERE通过车顶安装的四个广角的24 兆像素摄像头、旋转式的激光雷达、陀螺仪以及GPS 系统,依靠自有算法能够生成高清地图。按照Here的预期,用于自动驾驶高清地图服务预计将在2020年能够上线。

国内的高德地图也已经在推进地图数据的高精度化,在未来高德希望能够利用高精地图数据支撑自动驾驶的发展,自动驾驶再产生新的数据,经过科学自动化的处理,变得更新更准,更能被机器电脑使用和学习的数据,最终形成高精地图数据的生产闭环。地图行业及自动驾驶领域的巨头百度也早有布局,目前高精度地图已经是百度最重要的战略性业务之一。

A16Z的合伙人担心高精度地图会存在垄断的机会,因为他认为在自动驾驶时代人们将不得不完全依赖于这些成本高昂地图,且这个目前没有法律所管辖的领域也急需监督。

星河研究院认为从我国情况来看这种担心有些多余,在国内资本充足的现状下,多家地图企业相互竞争才是比较现实的情况,而其高昂的成本多半要先由风险投资商承担,再到后期寻找合适的变现模式。目前高德已经宣布其高精度地图对自动驾驶汽车免费开放,而预计随着竞争的加剧,为了市场份额而争相免费的情况将不可避免。

2. 机器学习 vs 工程算法

算法是支撑自动驾驶技术最关键的部分,目前主流自动驾驶公司都采用了机器学习与人工智能算法来实现。

而海量的数据是机器学习以及人工智能算法的基础,通过此前提到的传感器、V2X设施和高精度地图信息所获得的数据,以及收集到的驾驶行为、驾驶经验、驾驶规则、案例和周边环境的数据信息,不断优化的算法能够识别并最终规划路线、操纵驾驶。

现在面临的主要问题是相比于模型计算,真实行驶场景中的算法需要的数据过多且计算量超出了现有能力。目前已经有了不少对机器学习进行简化的尝试,例如OpenAI的Universe这一项目,未来这一问题或许能够通过近似简化以及计算能力的提高得到解决。

星河研究院:在自动驾驶领域到底是做青蛙还是做天鹅?(下)

同时在机械以及路径规划方面较为优秀的工程算法也不应该被弃之不顾。这两者最主要的区别是工程算法依靠固定的逻辑及规则运行,而机器学习能够结合历史经验与数据计算出最优结果。

Boston Dynamics令人惊叹的机器人的算法中并没有使用机器学习技术,但依然拥有了令人印象深刻的成果。因此即使工程算法在执行效率上与基于深度学习算法的Alpha-Go并不在一个水平,但将两者的优点相结合依然能够有效的提升机器学习的最终效果。

3. 算法通用化 vs 本地化

本地化是一个计算机科学的术语,意味着软件将会依据其周围的环境条件选择合适的执行策略。

每个城市都有不同的驾驶习惯,所以未来自动驾驶汽车如何处理好本地化问题成为了其实际应用前必须突破的障碍。如果算法不能够做到本地化,那么在班加罗尔适用的自动驾驶安全措施很明显将会在波士顿造成严重的交通拥堵,其他城市亦然。

但我们无法为每一个不同驾驶习惯的地区都编写特定的算法,因此能够实现本地化的自适应综合算法成为了关键,这种自适应算法要做到能够通过学习社会习俗及典型的当地人类行为来使自动驾驶汽车获得更好的表现。

自动驾驶技术在普及过程中,以及完全实现后将会对社会造成的影响

出行是人们生活中最基本的需求之一,因此随着自动驾驶技术的逐布实现,我们的生活也将产生巨大的变革,而涉及到出行行业的汽车制造、出行服务商、保险、市政等等环节都会发生巨大的变革。

1. 传统汽车厂商 vs 互联网公司

汽车产业是一个庞大的链条,涉及到了上下游无数的零配件制造与配送体系,其影响范围仅次于房地产业。老牌汽车厂商们拥有的全套汽车制造基础设备,丰富的汽车设计、制造经验以及熟练的流水线运行管理经验都是其相对于跨界造车的科技创新企业的优势。

星河研究院:在自动驾驶领域到底是做青蛙还是做天鹅?(下)

并且传统汽车厂商已经认识到未来汽车产业的创新发展主要是基于软件基础之上的,因此他们积极的在硅谷设立办公室,高薪雇佣IT技术人员。例如福特汽车就在硅谷设立了自动驾驶研究与创新中心,而宝马此前更是另辟蹊径选择了与百度进行自动驾驶的技术合作。

但科技创新企业的机会也依然很大。通过灵活超前的设计理念以及优秀的软件开发能力,一大批的初创科技型造车企业涌现,蔚来汽车下线的超跑打破了全球最快电动车速度记录且已经在实际道路开展自动驾驶路试,行业领头羊特斯拉更是宣称其2018年将具备年产50万辆汽车的规模,且这些汽车都可以选配最新的辅助驾驶功能。

国内厂商在自动驾驶领域也构成了一极,科技创新类公司中,车和家同蔚来汽车一样也在实验自动驾驶技术并希望将其尽快量产,百度等软件公司在自动驾驶算法及硬件上也有着很高的技术壁垒,传统主机厂商中上汽、北汽、长安都对自动驾驶技术有着大额的投入,且长安作为第一家进行实车展示的主机厂商其自动驾驶汽车已经有超过1万公里的测试里程。中国作为世界上深度学习论文发表数量最多的国家,其自动驾驶技术十分值得市场的期待。

2. 购买汽车 vs 购买服务

如果作为消费者的我们把从汽车制造商购买汽车的习惯,转变为向类似Uber和Lyft这样的出行公司购买交通服务,这将会令汽车制造商从以往的B2C模式转型为B2B公司,即制造商向出行公司提供设备,而出行公司向消费者提供服务。

星河研究院:在自动驾驶领域到底是做青蛙还是做天鹅?(下)

可以预见汽车工业的发展会更类似于航空业,消费者不会关心驾驶何种汽车出行,只需要在服务平台发布需求并等待接单即可。

需要注意的是随着商业模式的变化,是否未来自动驾驶汽车也会和飞机一样千篇一律毫无特点,以便于出行服务公司压缩成本节省开支呢?这一现象或许将会对汽车制造行业产生较大的负面影响。

3. 汽车保险,保汽车 vs 保硬件

在如今每25起交通事故中,有24起都是因为人为错误而发生的,比如说超速、分心驾驶、醉驾、闯红灯等。因此现在的汽车保险价格,由司机所在的城市人口、居住地和购买车辆的车型、价值等数据精算得出,但未来随着自动驾驶技术的到来,事故率显然要趋近于0,因此保险行业的变革势不可免。

星河研究院:在自动驾驶领域到底是做青蛙还是做天鹅?(下)

也许未来保险的精算会基于汽车所处城市、汽车制造商是谁,或者拥有汽车或租赁汽车的人的身份来判定,而保险的模式也不一定会局限在年费这一单一场景下。但保险价格的最终计算方法目前还是无法推测,因为虽然事故率会趋近于0,但一旦发生事故,车上昂贵的激光雷达系统、地图分析计算机和其他硬件设备的维修或更换将会耗费超过以往数倍的资金,因此保险公司将会面临怎样维修成本目前来看无法确定。

处于混合驾驶情况下的保险业将更加混乱,毕竟自动驾驶车辆与人工驾驶车辆混合存在的阶段不可避免,届时责任认定都会成为很复杂的问题。

4. 上下班,通勤 vs 步行

有一个论点是未来通勤时间将会比现在更长,原因是通勤时间已经不再是生活的支出成本。当所有汽车都具备自动驾驶功能的时候,交通指示灯和事故都不复存在,而我们可以利用通勤的时间在车上做任何事情。

但自动驾驶汽车和汽车服务运营商的存在也将释放很多诸如停车场、修车店等在内的城市空间,这些空间会增加人们的居住场所或工作场所,因此人们或许将会住在距离工作地点很近的地方,而不像今天一样需要长距离通勤。

一些业内人士预测自动驾驶的时代将会在2020—2040年到来,我们将会在有生之年看到这一奇妙的世界,对于大众来说从现在就做好准备迎接未来是当下最好的选择。

雷锋网版权文章,未经授权禁止转载。详情见转载须知

星河研究院:在自动驾驶领域到底是做青蛙还是做天鹅?(下)

(完)