本文作者Zhreshold,原文载于其知乎主页,雷锋网(公众号:雷锋网(公众号:雷锋网))获其授权发布。
本文为大家介绍实验过程中训练、测试过程及结果。算法和数据集参见《从零开始码一个皮卡丘检测器-CNN目标检测入门教程(上)》
训练 Train
损失函数 Losses
通过定义损失函数,我们可以让网络收敛到我们希望得到的目标检测功能,也就是说,我们希望网络能正确预测物体的类别,同时能预测出准确的预设框偏移量,以正确地显示物体的真正大小和位置。
这个预测的类别和偏移量都是可以通过真实标签和网络的当前预测值得到,在这里我们用MultiBoxTarget层来计算,其中包含了预测框和真实标签的匹配,正类和负类的选择,就不一一详述了。(详情见论文 SSD: Single Shot MultiBox Detector)。
from mxnet.contrib.ndarray import MultiBoxTarget
def training_targets(default_anchors, class_predicts, labels):
class_predicts = nd.transpose(class_predicts, axes=(0, 2, 1))
z = MultiBoxTarget(*[default_anchors, labels, class_predicts])
box_target = z[0] # 预设框偏移量 (x, y, width, height)
box_mask = z[1] # box_mask用来把负类的偏移量置零,因为背景不需要位置!
cls_target = z[2] # 每个预设框应该对应的分类
return box_target, box_mask, cls_target
在gluon.loss中有很多预设的损失函数可以选择,当然我们也可以快速地手写一些损失函数。
首先,对于物体分类的概率,平时我们往往用交叉墒,不过在目标检测中,我们有大量非平衡的负类(背景),那么 Focal Loss会是一个很好的选择(详情见论文 Focal Loss for Dense Object Detection)。
class FocalLoss(gluon.loss.Loss):
def __init__(self, axis=-1, alpha=0.25, gamma=2, batch_axis=0, **kwargs):
super(FocalLoss, self).__init__(None, batch_axis, **kwargs)
self._axis = axis
self._alpha = alpha
self._gamma = gamma
def hybrid_forward(self, F, output, label):
output = F.softmax(output)
pt = F.pick(output, label, axis=self._axis, keepdims=True)
loss = -self._alpha * ((1 - pt) ** self._gamma) * F.log(pt)
return F.mean(loss, axis=self._batch_axis, exclude=True)
# cls_loss = gluon.loss.SoftmaxCrossEntropyLoss()
cls_loss = FocalLoss()
print(cls_loss)
FocalLoss(batch_axis=0, w=None)
接下来是一个流行的 SmoothL1 损失函数,用来惩罚不准确的预设框偏移量。
class SmoothL1Loss(gluon.loss.Loss):
def __init__(self, batch_axis=0, **kwargs):
super(SmoothL1Loss, self).__init__(None, batch_axis, **kwargs)
def hybrid_forward(self, F, output, label, mask):
loss = F.smooth_l1((output - label) * mask, scalar=1.0)
return F.mean(loss, self._batch_axis, exclude=True)
box_loss = SmoothL1Loss()
print(box_loss)
SmoothL1Loss(batch_axis=0, w=None)
衡量性能指标 Evaluate metrics
我们在训练时需要一些指标来衡量训练是否顺利,我们这里用准确率衡量分类的性能,用平均绝对误差衡量偏移量的预测能力。这些指标对网络本身没有任何影响,只是用于观测。
cls_metric = mx.metric.Accuracy()
box_metric = mx.metric.MAE() # measure absolute difference between prediction and target
选择训练用的设备 Set context for training
ctx = mx.gpu() # 用GPU加速训练过程
try:
_ = nd.zeros(1, ctx=ctx)
# 为了更有效率,cuda实现需要少量的填充,不影响结果
train_data.reshape(label_shape=(3, 5))
train_data = test_data.sync_label_shape(train_data)except mx.base.MXNetError as err:
# 没有gpu也没关系,交给cpu慢慢跑
print('No GPU enabled, fall back to CPU, sit back and be patient...')
ctx = mx.cpu()
初始化网络参数 Initialize parameters
net=ToySSD(num_class)
net.initialize(mx.init.Xavier(magnitude=2),ctx=ctx)
用gluon.Trainer简化训练过程 Set up trainer
gluon.Trainer能简化优化网络参数的过程,免去对各个参数单独更新的痛苦。
net.collect_params().reset_ctx(ctx)
trainer=gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.1,'wd':5e-4})
开始训练 Start training
既然是简单的示例,我们不想花费太多的时间来训练网络,所以会预加载训练过一段时间的网络参数继续训练。
如果你感兴趣的话,可以设置
from_scratch=True
这样网络就会从初始的随机参数开始训练。
一般从头训练用单个gpu会花费半个多小时。
epochs = 150 # 设大一点的值来得到更好的结果
log_interval = 20
from_scratch = False # 设为True就可以从头开始训练
if from_scratch:
start_epoch = 0else:
start_epoch = 148
pretrained = 'ssd_pretrained.params'
sha1 = 'fbb7d872d76355fff1790d864c2238decdb452bc'
url = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/ssd_pikachu-fbb7d872.params'
if not osp.exists(pretrained) or not verified(pretrained, sha1):
print('Downloading', pretrained, url)
download(url, fname=pretrained, overwrite=True)
net.load_params(pretrained, ctx)
喝咖啡的时间
import time
from mxnet import autograd as ag
for epoch in range(start_epoch, epochs):
# 重置iterator和时间戳
train_data.reset()
cls_metric.reset()
box_metric.reset()
tic = time.time()
# 迭代每一个批次
for i, batch in enumerate(train_data):
btic = time.time()
# 用autograd.record记录需要计算的梯度
with ag.record():
x = batch.data[0].as_in_context(ctx)
y = batch.label[0].as_in_context(ctx)
default_anchors, class_predictions, box_predictions = net(x)
box_target, box_mask, cls_target = training_targets(default_anchors, class_predictions, y)
# 损失函数计算
loss1 = cls_loss(class_predictions, cls_target)
loss2 = box_loss(box_predictions, box_target, box_mask)
# 1比1叠加两个损失函数,也可以加权重
loss = loss1 + loss2
# 反向推导
loss.backward()
# 用trainer更新网络参数
trainer.step(batch_size)
# 更新下衡量的指标
cls_metric.update([cls_target], [nd.transpose(class_predictions, (0, 2, 1))])
box_metric.update([box_target], [box_predictions * box_mask])
if (i + 1) % log_interval == 0:
name1, val1 = cls_metric.get()
name2, val2 = box_metric.get()
print('[Epoch %d Batch %d] speed: %f samples/s, training: %s=%f, %s=%f'
%(epoch ,i, batch_size/(time.time()-btic), name1, val1, name2, val2))
# 打印整个epoch的的指标
name1, val1 = cls_metric.get()
name2, val2 = box_metric.get()
print('[Epoch %d] training: %s=%f, %s=%f'%(epoch, name1, val1, name2, val2))
print('[Epoch %d] time cost: %f'%(epoch, time.time()-tic))
# 还可以把网络的参数存下来以便下次再用
net.save_params('ssd_%d.params' % epochs)
[Epoch 148 Batch 19] speed: 109.217423 samples/s, training: accuracy=0.997539, mae=0.001862
[Epoch 148] training: accuracy=0.997610, mae=0.001806
[Epoch 148] time cost: 17.762958
[Epoch 149 Batch 19] speed: 110.492729 samples/s, training: accuracy=0.997607, mae=0.001824
[Epoch 149] training: accuracy=0.997692, mae=0.001789
[Epoch 149] time cost: 15.353258
测试 Test
接下来就是 的时刻,我们用训练好的网络来测试一张图片。
网络推导的过程和训练很相似,只不过我们不再需要计算真值和损失函数,也不再需要更新网络的参数,一次推导就可以得到结果。
准备测试数据 Prepare the test data
我们需要读取一张图片,稍微调整到网络需要的结构,比如说我们需要调整图片通道的顺序,减去平均值等等惯用的方法。
import numpy as np
import cv2
def preprocess(image):
"""Takes an image and apply preprocess"""
# 调整图片大小成网络的输入
image = cv2.resize(image, (data_shape, data_shape))
# 转换 BGR 到 RGB
image = image[:, :, (2, 1, 0)]
# 减mean之前先转成float
image = image.astype(np.float32)
# 减 mean
image -= np.array([123, 117, 104])
# 调成为 [batch-channel-height-width]
image = np.transpose(image, (2, 0, 1))
image = image[np.newaxis, :]
# 转成 ndarray
image = nd.array(image)
return image
image = cv2.imread('img/pikachu.jpg')
x = preprocess(image)
print('x', x.shape)
x (1, 3, 256, 256)
网络推导 Network inference
只要一行代码,输入处理完的图片,输出我们要的所有预测值和预设框。
# 如果有预先训练好的网络参数,可以直接加载
# net.load_params('ssd_%d.params' % epochs, ctx)
anchors, cls_preds, box_preds = net(x.as_in_context(ctx))
print('anchors', anchors)
print('class predictions', cls_preds)
print('box delta predictions', box_preds)
anchors
[[[-0.084375 -0.084375 0.115625 0.115625 ]
[-0.12037501 -0.12037501 0.15162501 0.15162501]
[-0.12579636 -0.05508568 0.15704636 0.08633568]
...,
[ 0.01949999 0.01949999 0.98049998 0.98049998]
[-0.12225395 0.18887302 1.12225389 0.81112695]
[ 0.18887302 -0.12225395 0.81112695 1.12225389]]]
<NDArray 1x5444x4 @gpu(0)>
class predictions
[[[ 0.33754104 -1.64660323]
[ 1.15297699 -1.77257478]
[ 1.1535604 -0.98352218]
...,
[-0.27562004 -1.29400492]
[ 0.45524898 -0.88782215]
[ 0.20327765 -0.94481993]]]
<NDArray 1x5444x2 @gpu(0)>
box delta predictions
[[-0.16735925 -0.13083346 -0.68860865 ..., -0.18972112 0.11822788
-0.27067867]]
<NDArray 1x21776 @gpu(0)>
是不是看着还很奇怪,别着急,还差最后一步
转换为可读的输出 Convert predictions to real object detection results
要把网络输出转换成我们需要的坐标,还要最后一步,比如我们需要softmax把分类预测转换成概率,还需要把偏移量和预设框结合来得到物体的大小和位置。
非极大抑制(Non-Maximum Suppression)也是必要的一步,因为一个物体往往有不只一个检测框。
from mxnet.contrib.ndarray import MultiBoxDetection
# 跑一下softmax, 转成0-1的概率
cls_probs = nd.SoftmaxActivation(nd.transpose(cls_preds, (0, 2, 1)), mode='channel')
# 把偏移量加到预设框上,去掉得分很低的,跑一遍nms,得到最终的结果
output = MultiBoxDetection(*[cls_probs, box_preds, anchors], force_suppress=True, clip=False)
print(output)
[[[ 0. 0.61178613 0.51807499 0.5042429 0.67325425 0.70118797]
[-1. 0.59466797 0.52491206 0.50917625 0.66228026 0.70489514]
[-1. 0.5731774 0.53843218 0.50217044 0.66522425 0.7118448 ]
...,
[-1. -1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. -1. ]]]
<NDArray 1x5444x6 @gpu(0)>
结果中,每一行都是一个可能的结果框,表示为[类别id, 得分, 左边界,上边界,右边界,下边界],有很多-1的原因是网络预测到这些都是背景,或者作为被抑制的结果。
显示结果 Display results
数字永远不如图片来得直观
把得到的转换结果画在图上,就得到我们期待已久的几十万伏特图了!
def display(img, out, thresh=0.5):
import random
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (10,10)
pens = dict()
plt.clf()
plt.imshow(img)
for det in out:
cid = int(det[0])
if cid < 0:
continue
score = det[1]
if score < thresh:
continue
if cid not in pens:
pens[cid] = (random.random(), random.random(), random.random())
scales = [img.shape[1], img.shape[0]] * 2
xmin, ymin, xmax, ymax = [int(p * s) for p, s in zip(det[2:6].tolist(), scales)]
rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False,
edgecolor=pens[cid], linewidth=3)
plt.gca().add_patch(rect)
text = class_names[cid]
plt.gca().text(xmin, ymin-2, '{:s} {:.3f}'.format(text, score),
bbox=dict(facecolor=pens[cid], alpha=0.5),
fontsize=12, color='white')
plt.show()
display(image[:, :, (2, 1, 0)], output[0].asnumpy(), thresh=0.45)
小结 Conclusion
目标检测不同于分类任务,需要考虑的不只是全图尺度的单一分类,而是需要检测到不同大小,不同位置的物体,难度自然提升了许多,用扫窗之类的传统方法早已不适合神经网络这种需要大量计算需求的新结构。幸好我们可以用本章节介绍的方法,利用卷积网络的特性,一次推导得到全部的预测结果,相对来说快速且准确。
我们希望能用较短的篇幅来描述一个足够简单的过程,但是难免会有疏漏,欢迎各种问题和建议,与此同时,我们会不断更新教程,并且会带来更多不同的算法,敬请期待。
相关链接
Apache MXNet官方网站:https://mxnet.incubator.apache.org/
Github Repo: zackchase/mxnet-the-straight-dope
英文版教程: Object Detection Using Convolutional Neural Networks
Eric知乎介绍0.11 新特性:https://zhuanlan.zhihu.com/p/28648399
0.11 Release:https://github.com/apache/incubator-mxnet/releases
安装指南:https://mxnet.incubator.apache.org/versions/master/get_started/install.html
其他Gluon教程:http://gluon.mxnet.io/
Gluon讲座PPT: https://github.com/zackchase/mxnet-slides/blob/master/kdd-mxnet-slides.pdf
Gluon深度学习样例:https://github.com/apache/incubator-mxnet/tree/master/example/gluon
SSD: Single Shot MultiBox Detector
Focal Loss: [1708.02002] Focal Loss for Dense Object Detection
雷锋网版权文章,未经授权禁止转载。详情见转载须知。