为实习准备的数据结构(4)-- 二叉树

在这里插入图片描述

前言

半年前,种过一次树,有不少朋友喜欢。
但是接下来我又要重新种树了,因为我发现,有瑕疵(我忘得差不多了)。
不过可以放心,前面那篇我不会删,毕竟大家比较喜欢。

能不多说话就不多说话,需要看概念的话可以去前一篇:种树

二叉树

二叉树的创建

class TreeNode {
private:
	int val;	//这里的数据类型按需取
	TreeNode* left;
	TreeNode* right;

public:
	TreeNode(int x) :val(x), left(NULL), right(NULL){}
	int get_val() {
		return this->val;
	}

	TreeNode* getleft() {
		return this->left;
	}

	TreeNode* getright() {
		return this->right;
	}

	void set_left(TreeNode* node) {
		this->left = node;
	}

	void set_right(TreeNode* node) {
		this->right = node;
	}
};

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

二叉树的前序遍历

以此图为例:
在这里插入图片描述
先访问根结点,然后再访问左子树,最后访问右子树。

void PreOrderTraverse(TreeNode* root) {
	if (NULL == root) {
		return;
	}
	cout << root->get_val() << endl;
	PreOrderTraverse(root->getleft());
	PreOrderTraverse(root->getright());
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

打印信息:ABDECFG


二叉树的中序遍历

先访问左子树,中间访问根节点,最后访问右子树。

void MidOrderTraverse(TreeNode* root) {
	if (NULL == root) {
		return;
	}
	MidOrderTraverse(root->getleft());
	cout << root->get_val() << endl;
	MidOrderTraverse(root->getright());
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

打印信息:DBEAFCG


二叉树的后序遍历

先访问左子树,再访问右子树,最后访问根节点。

void LastOrderTraverse(TreeNode* root){
	if(NULL == root)
		return;
	LastOrderTraverse(root->left);
	LastOrderTraverse(root->right);
	cout<<root->val;
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

打印顺序:DEBFCA


已知前、中序遍历,还原二叉树

特别标注:如果二叉树中有相同值元素的存在,那么有极大概率还原失败,下面中、后序遍历也是

给了中序那就好办了
一:看中序排列中的根节点位置在哪里,根节点前面都属于根的左子树及其后代,后面你懂得。
二:将中序序列分两段:(D、B、E)和(F、C、G)
三:明眼人一看就知道根节点左子树的“根节点”是:B
别问我为啥,问就是看前序序列的第二位
四:重复二三,直到根节点左子树排出来为止
五:同上,排出右子树

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

具体思路:

对于任意一颗树而言,前序遍历的形式总是
[ 根节点, [左子树的前序遍历结果], [右子树的前序遍历结果] ]
即根节点总是前序遍历中的第一个节点。

而中序遍历的形式总是
[ [左子树的中序遍历结果], 根节点, [右子树的中序遍历结果] ]

只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的前序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。

这样以来,我们就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。

细节

在中序遍历中对根节点进行定位时,一种简单的方法是直接扫描整个中序遍历的结果并找出根节点,但这样做的时间复杂度较高。我们可以考虑使用哈希映射(HashMap)来帮助我们快速地定位根节点。对于哈希映射中的每个键值对,键表示一个元素(节点的值),值表示其在中序遍历中的出现位置。在构造二叉树的过程之前,我们可以对中序遍历的列表进行一遍扫描,就可以构造出这个哈希映射。在此后构造二叉树的过程中,我们就只需要 O(1) 的时间对根节点进行定位了。

下面的代码给出了详细的注释。

class Solution {
private: unordered_map<int, int> index;

public: TreeNode* myBuildTree(const vector<int>& preorder, const vector<int>& inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) { if (preorder_left > preorder_right) { return nullptr; } // 前序遍历中的第一个节点就是根节点 int preorder_root = preorder_left; // 在中序遍历中定位根节点 int inorder_root = index[preorder[preorder_root]]; // 先把根节点建立出来 TreeNode* root = new TreeNode(preorder[preorder_root]); // 得到左子树中的节点数目 int size_left_subtree = inorder_root - inorder_left; // 递归地构造左子树,并连接到根节点 // 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素 root->left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1); // 递归地构造右子树,并连接到根节点 // 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素 root->right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right); return root; } TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { int n = preorder.size(); // 构造哈希映射,帮助我们快速定位根节点 for (int i = 0; i < n; ++i) { index[inorder[i]] = i; } return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1); }
};

> 作者:LeetCode-Solution
> 链接:https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/solution/cong-qian-xu-yu-zhong-xu-bian-li-xu-lie-gou-zao-9/ 来源:力扣(LeetCode) 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

时间复杂度:O(n),其中 n 是树中的节点个数。

空间复杂度:O(n),除去返回的答案需要的 O(n) 空间之外,我们还需要使用 O(n) 的空间存储哈希映射,以及 O(h)(其中 h 是树的高度)的空间表示递归时栈空间。这里 h < nh<n,所以总空间复杂度为 O(n)。


已知后序、中序遍历结果,还原二叉树

这个LeetCode上没找到,我模仿着写一个。

//一、二步同上
//其实第三步原理是一样的,不过我们的脑子习惯了从前到后,所以,让我帮你们转个弯。

//像对中序分割一样,将后序序列也分割了。
//从中序排列的分割中我们知道根节点的右子树有哪些成员,所以后序序列这样分:
//(H I D J K E B)(L F G C)
//现在就很明显可以看出根节点左子树的“根节点”是谁了吧

//重复以上步骤

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

具体思路:

对于任意一颗树而言,后序遍历的形式总是
[ [左子树的前序遍历结果], [右子树的前序遍历结果],根节点 ]
即根节点总是后序遍历中的最后一个节点。

而中序遍历的形式总是
[ [左子树的中序遍历结果], 根节点, [右子树的中序遍历结果] ]

只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。由于同一颗子树的后序遍历和中序遍历的长度显然是相同的,因此我们就可以对应到后序遍历的结果中,对上述形式中的所有左右括号进行定位。

这样以来,我们就知道了左子树的后序遍历和中序遍历结果,以及右子树的后序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。

class Solution {
private: unordered_map<int, int> index;

public: TreeNode* myBuildTree(const vector<int>& lastorder, const vector<int>& inorder, int lastorder_left, int lastorder_right, int inorder_left, int inorder_right) { if (lastorder_left > lastorder_right) { return nullptr; } // 后序遍历中的最后一个节点就是根节点 int lastorder_root = lastorder_right; // 在中序遍历中定位根节点 int inorder_root = index[lastorder[lastorder_root]]; // 先把根节点建立出来 TreeNode* root = new TreeNode(lastorder[lastorder_root]); // 得到左子树中的节点数目 int size_left_subtree = inorder_root - inorder_left; // 递归地构造左子树,并连接到根节点 // 后序遍历中「从 左边界开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素 root->left = myBuildTree(lastorder, inorder, lastorder_left, lastorder_left + size_left_subtree-1, inorder_left, inorder_root - 1); // 递归地构造右子树,并连接到根节点 // 后序遍历中「从 左边界+左子树节点数目 开始到 右边界-1 」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素 root->right = myBuildTree(lastorder, inorder, lastorder_left + size_left_subtree, lastorder_right-1, inorder_root + 1, inorder_right); return root; } TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) { int n = preorder.size(); // 构造哈希映射,帮助我们快速定位根节点 for (int i = 0; i < n; ++i) { index[inorder[i]] = i; } return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1); }
};

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37

二叉树的层序遍历

所谓的层序遍历,就是从根节点(第一层)开始,依次向下,获取每一层所有结点的值,有二叉树如下:
在这里插入图片描述

实现步骤:

1.创建队列,存储每一层的结点;
2.使用循环从队列中弹出一个结点:
 2.1获取当前结点的key;
 2.2如果当前结点的左子结点不为空,则把左子结点放入到队列中
 2.3如果当前结点的右子结点不为空,则把右子结点放入到队列中

  
 
  • 1
  • 2
  • 3
  • 4
  • 5

代码实现:

#include<queue>
#include<iostream>

using namespace std;

void LevelOrder(Node *root) {
	if (root == NULL)
		return; queue<Node *>	q;
	// 启动
	q.push(root);

	while (!q.empty()) {
		Node *front = q.front();
		q.pop(); cout<<front->value; if (front->left != NULL) q.push(front->left); if (front->right != NULL) q.push(front->right);
	}
	cout<<endl;
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

二叉搜索树

所谓二叉搜索树,可提供对数时间的元素插入和访问。二叉搜索树的节点放置规则是:任何节点的键值一定大于去其左子树中的每一个节点的键值,并小于其右子树的每一个节点的键值。

所以在二叉树中找到最大值和最小值是很简单的,比较麻烦的是元素的插入和移除。
插入新元素时,从根节点开始,遇键值较大者就向左,遇键值较小者就向右,一直到尾端,即为插入点。
移除旧元素时,如果它是叶节点,直接拿走就是了;如果它有一个节点,那就把那个节点补上去;如果它有两个节点,那就把它右节点的最小后代节点补上去。

在这里插入图片描述

构造二叉搜索树

现有序列:A = {61, 87, 59, 47, 35, 73, 51, 98, 37, 93}。根据此序列构造二叉搜索树过程如下:

(1)i = 0,A[0] = 61,节点61作为根节点;
(2)i = 1,A[1] = 87,87 > 61,且节点61右孩子为空,故81为61节点的右孩子;
(3)i = 2,A[2] = 59,59 < 61,且节点61左孩子为空,故59为61节点的左孩子;
(4)i = 3,A[3] = 47,47 < 59,且节点59左孩子为空,故47为59节点的左孩子;
(5)i = 4,A[4] = 35,35 < 47,且节点47左孩子为空,故35为47节点的左孩子;
(6)i = 5,A[5] = 73,73 < 87,且节点87左孩子为空,故73为87节点的左孩子;
(7)i = 6,A[6] = 51,47 < 51,且节点47右孩子为空,故51为47节点的右孩子;
(8)i = 7,A[7] = 98,98 < 87,且节点87右孩子为空,故98为87节点的右孩子;
(9)i = 8,A[8] = 93,93 < 98,且节点98左孩子为空,故93为98节点的左孩子;

创建完毕后如图中的二叉搜索树:
在这里插入图片描述

代码实现:

#include<vector>
#include<iostream>

using namespace std;

class SerchTree{
private:
	TreeNode* root;
public:
	SerchTree();

	//插入节点
	void Insert_Node(TreeNode* root,int val){
		if(NULL == root) root = new TreeNode(val);
		else{ if(val<root->val) Insert_Node(root->left,val); else{	//一样大就往左走吧 Insert_Node(root->right,val); }
		}
	}

	//从数组中构造二叉搜索树	
	void Create_SerchTree(vector<int>& vec){
		int sz = vec.size();
		for(int i = 0;i<sz;i++){ Insert_Node(root,vec[i]);
		}
	}

	//搜索某个节点是否存在
	bool SerchNode(TreeNode* root,int val){
		if(NULL == root) return false;
		if(val<root->val) return SerchNode(root->left,val);
		else if(val>root->val) return SerchNode(root->right)
		else return ture;
	} //删除节点
	void DelNode(TreeNode* node){
		TreeNode* temp;
		if(NULL == node->right){	//如果右子节点为空 temp = node; node = node->left; delete temp;
		}
		else{	//如果右子节点不空 temp = node; while(NULL != temp->left){ temp = temp->left; } node->val = temp->val; delete temp;
		}
	}	
	//删除某个节点
	void DelSerchNode(TreeNode* root,int val){
		if(NULL == root) return;
		if(val<root->val) return DelSerchNode(root->left,val);
		else if(val>root->val) return DelSerchNode(root->right)
		else DelNode(root);
	}

	//计算二叉树的最大深度
	int maxDepth(Node x) { 	//1.如果根结点为空,则最大深度为0; 
		if (x == null) return 0; int max = 0; int maxL = 0; int maxR = 0; //2.计算左子树的最大深度; 
		if (x.left != null) maxL = maxDepth(x.left); //3.计算右子树的最大深度; 
		if (x.right != null) maxR = maxDepth(x.right); //4.当前树的最大深度=左子树的最大深度和右子树的最大深度中的较大者+1 
		max = maxL > maxR ? maxL + 1 : maxR + 1; return max; 
	}
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94

二叉树的其他操作

复制二叉树

这里需要在前面加上个函数:

void set_val(int val) {
	this->val = val;
}

  
 
  • 1
  • 2
  • 3

然后开始写,我们将后序遍历进行一个改装:

TreeNode* TreeCopy(TreeNode* root) {
	if (root) {
		TreeNode* temp = new TreeNode();
		temp->set_left(TreeCopy(root->getleft()));
		temp->set_right(TreeCopy(root->getright()));
		temp->set_val(root->get_val());
		return temp;
	}
	return NULL;
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

得到最终结果。


判断两个二叉树相等

这也是之前在LeetCode上做过的一道题了,这里我们也对后序遍历进行一次改写。

判断二叉树相等的几个要素:

1、二叉树结构相等
2、二叉树相对位置的值相等

  
 
  • 1
  • 2

所以产生代码如下:

bool is_equal_trees(TreeNode* a, TreeNode* b) {
	return (!a && !b) || ((a && b) && (a->get_val() == b->get_val()) && is_equal_trees(a->getleft(), b->getleft()) && is_equal_trees(a->getright(), b->getright()));
}

  
 
  • 1
  • 2
  • 3

在这里,我深刻的又体会到不要复制粘贴,尽管是自己的代码


树的东西太多啦,初步估计要整理个四五篇吧。

所以,这篇就先打个头阵。

在这里插入图片描述

文章来源: lion-wu.blog.csdn.net,作者:看,未来,版权归原作者所有,如需转载,请联系作者。

原文链接:lion-wu.blog.csdn.net/article/details/113729756

(完)