FairMot算法重点突破

a. 比起之前两步(先检测后Re-ID)的追踪算法,FairMot完成检测与Re-ID共享网络参数,减少算法推理时间,速度大幅度提升。

b. 比起之前单步的追踪算法JDE[12],存在的一些不足,如:一个物体可能被多个anchor负责并进行检测,或实际物体的中心可能与负责对该物体进行检测的anchor中心有偏差,都会导致id频繁变换。Fairmot针对这些不足,不用anchor-based的检测方式,以anchor-free目标检测范式代替。

涉及到的核心知识点:一个有效简洁的网络结构DLA34、Kalman Filter、iou与余弦距离、Hungarian Algorithm。下面详细介绍DLA34网络,至于Kalman,Distance Metrixes, Hungarian Algorithm同Deep Sort的内容一致,这里不多做解释。FairMot旨在将检测与Re-ID揉在一个网络结构里,且需要是anchor-free的目标检测方式,所以DLA34网络结构必需要预估目标中心点的位置和对应目标的features。FairMot的网络结构图如下:

(完)