数据结构进阶(四)二叉排序树(二叉查找树)
注:构造一棵二叉排序树的目的,其实并不是为了排序(中序遍历),而是为了提高查找、插入、删除关键字的速度。
定义
二叉排序树又叫二叉查找树,英文名称是:Binary Sort Tree.BST的定义就不详细说了,我用一句话概括:左 < 中 < 右。 根据这个原理,我们可以推断:BST的中序遍历必定是严格递增的。
二叉查找树是满足以下条件的二叉树:
1.左子树上的所有节点值均小于根节点值;
2.右子树上的所有节点值均不小于根节点值;
3.左右子树也满足上述两个条件。
二叉查找树是基于二叉树的,其结点数据结构定义为如下:
-
public class TreeNode {
-
public Integer data;
-
-
/*该节点的父节点*/
-
public TreeNode parent;
-
-
/*该节点的左子节点*/
-
public TreeNode left;
-
-
/*该节点的右子节点*/
-
public TreeNode right;
-
-
public TreeNode(Integer data) {
-
this.data = data;
-
}
-
-
@Override
-
public String toString() {
-
return "TreeNode [data=" + data + "]";
-
}
-
}
现在明白了什么是二叉查找树,那么二叉查找树的基本操作又是如何来实现的呢?
查找
在二叉查找树中查找x的过程如下:
1、若二叉树是空树,则查找失败。
2、若x等于根结点的数据,则查找成功,否则。
3、若x小于根结点的数据,则递归查找其左子树,否则。
4、递归查找其右子树。
根据上述的步骤,写出其查找操作的代码:
-
/**
-
* @param data
-
* @return TreeNode
-
*/
-
public TreeNode findTreeNode(Integer data){
-
if(null == root){
-
return null;
-
}
-
TreeNode current = root;
-
while(current != null){
-
if(current.data > data){
-
current = current.left;
-
}else if(current.data < data){
-
current = current.right;
-
}else {
-
return current;
-
}
-
-
}
-
return null;
-
}
插入
二叉查找树的插入过程如下:
1.若当前的二叉查找树为空,则插入的元素为根节点;
2.若插入的元素值小于根节点值,则将元素插入到左子树中;
3.若插入的元素值不小于根节点值,则将元素插入到右子树中。
-
/**
-
* 往树中加节点
-
* @param data
-
* @return Boolean 插入成功返回true
-
*/
-
public Boolean addTreeNode(Integer data) {
-
-
if (null == root) {
-
root = new TreeNode(data);
-
System.out.println("数据成功插入到平衡二叉树中");
-
return true;
-
}
-
-
TreeNode treeNode = new TreeNode(data);// 即将被插入的数据
-
TreeNode currentNode = root;
-
TreeNode parentNode;
-
-
while (true) {
-
parentNode = currentNode;// 保存父节点
-
// 插入的数据比父节点小
-
if (currentNode.data > data) {
-
currentNode = currentNode.left;
-
// 当前父节点的左子节点为空
-
if (null == currentNode) {
-
parentNode.left = treeNode;
-
treeNode.parent = parentNode;
-
System.out.println("数据成功插入到二叉查找树中");
-
size++;
-
return true;
-
}
-
// 插入的数据比父节点大
-
} else if (currentNode.data < data) {
-
currentNode = currentNode.right;
-
// 当前父节点的右子节点为空
-
if (null == currentNode) {
-
parentNode.right = treeNode;
-
treeNode.parent = parentNode;
-
System.out.println("数据成功插入到二叉查找树中");
-
size++;
-
return true;
-
}
-
} else {
-
System.out.println("输入数据与节点的数据相同");
-
return false;
-
}
-
}
-
}
删除
二叉查找树的删除,分三种情况进行处理:
1.p为叶子节点,直接删除该节点,再修改其父节点的指针(注意分是根节点和不是根节点),如图a。
2.p为单支节点(即只有左子树或右子树)。让p的子树与p的父亲节点相连,删除p即可;(注意分是根节点和不是根节点);如图b。
3.p的左子树和右子树均不空。找到p的后继y,因为y一定没有左子树,所以可以删除y,并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替p的值;或者方法二是找到p的前驱x,x一定没有右子树,所以可以删除x,并让x的父亲节点成为y的左子树的父亲节点。如图c。
美文美图
文章来源: shq5785.blog.csdn.net,作者:No Silver Bullet,版权归原作者所有,如需转载,请联系作者。
原文链接:shq5785.blog.csdn.net/article/details/52516914