0x00 前言
在前一篇《R3蓝屏的多种方式及原理分析(一)》,主要讲解了如何利用NtRaiseHardError
进行蓝屏,以及它蓝屏的整个“旅程”。剩下的篇幅来介绍第二类蓝屏到底是如何发生的,主要解决以下问题:
如何将自己的“地位”提升为系统Critical Process/Thread
Critical Process是如何蓝屏的
变成Critical Thread之后为什么无法蓝屏
Windows内核Critical Process的设计到底精髓在哪里
如何利用以及如何防护此类攻击
0x01 背景
离第一篇的投稿已经过去了好几天,这段时间正好处于Windows 11发布的档口,看了下相关的报道,内核没什么大的更新,主要是更新了UI的内容,我猜测关于这部分的内核内容是没什么变化的,由于之前已经逆过一遍Win10的,那么咱们便直接从Win 11入手开始分析吧,如果跟Win10有很大不同的地方我会指出。有些微软自己官方说的小细节是存在误导的可能性的,还得靠自己来逆,废话不多说,直接开始。
先来看一下Win11下的蓝屏吧,黑屏???我觉得还不如蓝屏
0x02 相关API
根据上一篇就已经知道这4个API,但仅仅知道了函数名,这一节要详细介绍一下,每个参数的含义,先把逆向出来的各参数含义写在下面。
特别注意:Rtl系列的两个函数都是cdecl
(外平栈),否则会出现栈不平导致报错的情况。
NTSTATUS __cdecl RtlSetProcessIsCritical(
IN BOOLEAN NewValue, // 想要设置成的新值 0/1 1为启用 Critical Process 0为关闭
OUT PBOOLEAN OldValue OPTIONAL, // 返回的旧值 0/1 返回的是EPROCESS.Flags.BreakOnTermination的值
IN BOOLEAN NeedBreaks // 是否要求system critical breaks启用
)
NTSTATUS __cdecl RtlSetThreadIsCritical(
IN BOOLEAN NewValue, // 想要设置成的新值 0/1 1为启用 Critical Thread 0为关闭
OUT PBOOLEAN OldValue OPTIONAL, // 返回的旧值 0/1 ETHREAD.CrossThreadFlags.BreakOnTermination的值
IN BOOLEAN NeedBreaks // 是否要求system critical breaks启用
)
NTSTATUS NTAPI NtSetInformationProcess(
IN HANDLE ProcessHandle, // 进程的句柄 -1为当前进程
IN PROCESSINFOCLASS ProcessInformationClass, // 想要设置的类型
IN PVOID ProcessInformation, // 参数指针,由第二个参数ProcessInformationClass决定,
// 由于本文需要设置的是BreakOnTermination,只有是和否
// 因此只需要bool类型,下面的长度也默认为4
IN ULONG ProcessInformationLength // 参数长度
)
NTSTATUS NTAPI NtSetInformationThread(
IN HANDLE ThreadHandle, // 线程的句柄 -2为当前线程
IN THREADINFOCLASS ThreadInformationClass, // 想要设置的类型
IN PVOID ThreadInformation, // 参数指针
IN ULONG ThreadInformationLength // 参数长度
)
0x03 Rtl系如何封装Nt系函数
分析的版本,以下均基于Win11 正式版的ntoskrnl.exe、以及dll文件和pdb文件
1.RtlSetThreadIsCritical和RtlSetProcessIsCritical
打开IDA附加到ntdll上,直接开整。这俩函数基本算是一个模子刻出来的,把函数名字里的Process改成Thread,-2改成-1就完美替换。
图上的ZwQueryInformationxxx()
和NtSetInformationxxx()
都是四个参数,IDA的F5问题很大,这个上一节已经讲过了,咱们主要是用来看流程,关键的地方还得看汇编。
上面的NtGlobalFlags
先不谈,先来看看NtSetInformationThread/Process的参数
翻译成C则如下所示
status = NtSetInformationThread(GetCurrentThread(), ThreadBreakOnTermination, &Enable, sizeof(Enable));
status = NtSetInformationProcess(GetCurrentProcess(), ProcessBreakOnTermination, &Enable, sizeof(Enable));
2.GetCurrentProcess和GetCurrentThread
下面来逐个解析参数,首先第一个参数,为什么是-1和-2?
科普个小知识,GetCurrentProcess
()和GetCurrentThread()
返回的都是伪句柄,伪句柄是什么读者可以自行了解。反正结论就是
-
-1
代表当前进程
-
-2
代表当前线程
至于为什么,我也不知道为什么,它的源码就是这么写的,可能就是为了用着方便吧。打开vs,跟踪一下,查看调用堆栈,两个函数分别是KernelBase!GetCurrentProcess
Kernel32!GetCurrentThread
,不知道为什么kernel32!GetCurrentProcess
转发给kernelbase了,无语子,不就一行代码的事,至于吗?
3.两个枚举类型PROCESSINFOCLASS和THREADINFOCLASS
两个Nt函数的第二个参数分别为PROCESSINFOCLASS
和THREADINFOCLASS
,结构如下
typedef enum _THREADINFOCLASS
{
ThreadBasicInformation, //0
ThreadTimes, //1
ThreadPriority, //2
ThreadBasePriority, //3
ThreadAffinityMask, //4
ThreadImpersonationToken, //5
ThreadDescriptorTableEntry, //6
ThreadEnableAlignmentFaultFixup, //7
ThreadEventPair_Reusable, //8
ThreadQuerySetWin32StartAddress, //9
ThreadZeroTlsCell, //10
ThreadPerformanceCount, //11
ThreadAmILastThread, //12
ThreadIdealProcessor, //13
ThreadPriorityBoost, //14
ThreadSetTlsArrayAddress, //15
ThreadIsIoPending, //16
ThreadHideFromDebugger, //17
ThreadBreakOnTermination, //18 0x12
ThreadSwitchLegacyState, //19
ThreadIsTerminated, //20
ThreadLastSystemCall, //21
ThreadIoPriority, //22
ThreadCycleTime, //23
ThreadPagePriority, //24
ThreadActualBasePriority, //25
ThreadTebInformation, //26
ThreadCSwitchMon, //27
MaxThreadInfoClass //28
} THREADINFOCLASS;
typedef enum _PROCESSINFOCLASS
{
ProcessBasicInformation, //0
ProcessQuotaLimits, //1
ProcessIoCounters, //2
ProcessVmCounters, //3
ProcessTimes, //4
ProcessBasePriority, //5
ProcessRaisePriority, //6
ProcessDebugPort, //7
ProcessExceptionPort, //8
ProcessAccessToken, //9
ProcessLdtInformation, //10
ProcessLdtSize, //11
ProcessDefaultHardErrorMode, //12
ProcessIoPortHandlers, //13
ProcessPooledUsageAndLimits, //14
ProcessWorkingSetWatch, //15
ProcessUserModeIOPL, //16
ProcessEnableAlignmentFaultFixup, //17
ProcessPriorityClass, //18
ProcessWx86Information, //19
ProcessHandleCount, //20
ProcessAffinityMask, //21
ProcessPriorityBoost, //22
ProcessDeviceMap, //23
ProcessSessionInformation, //24
ProcessForegroundInformation, //25
ProcessWow64Information, //26
ProcessImageFileName, //27
ProcessLUIDDeviceMapsEnabled, //28
ProcessBreakOnTermination, //29 0x1D
ProcessDebugObjectHandle, //30
ProcessDebugFlags, //31
ProcessHandleTracing, //32
ProcessIoPriority, //33
ProcessExecuteFlags, //34
ProcessTlsInformation, //35
ProcessCookie, //36
ProcessImageInformation, //37
ProcessCycleTime, //38
ProcessPagePriority, //39
ProcessInstrumentationCallback, //40
ProcessThreadStackAllocation, //41
ProcessWorkingSetWatchEx, //42
ProcessImageFileNameWin32, //43
ProcessImageFileMapping, //44
ProcessAffinityUpdateMode, //45
ProcessMemoryAllocationMode, //46
MaxProcessInfoClass //47
} PROCESSINFOCLASS;
本文只使用BreakOnTermination的两个,其实NtSetInformationThread/Process
的功能是很强大的,用处非常多,想法有多大,舞台就有多大,在本文不再展开,后续文章中可能会继续介绍。
第三个参数和第四个参数上面有注释相信大家也都能看得懂。
4.NtGlobalFlags
这个东西还是很有用的,以下为它的具体含义。
Description | Symbolic Name | Hexadecimal Value | Abbreviation | Destination |
---|---|---|---|---|
Buffer DbgPrint Output | FLG_DISABLE_DBGPRINT | 0x08000000 | ddp | R,K |
Create kernel mode stack trace database | FLG_KERNEL_STACK_TRACE_DB | 0x2000 | kst | R |
Create user mode stack trace database | FLG_USER_STACK_TRACE_DB | 0x1000 | ust | R,K,I |
Debug initial command | FLG_DEBUG_INITIAL_COMMAND | 0x04 | dic | R |
Debug WinLogon | FLG_DEBUG_INITIAL_COMMAND_EX | 0x04000000 | dwl | R |
Disable heap coalesce on free | FLG_HEAP_DISABLE_COALESCING | 0x00200000 | dhc | R,K,I |
Disable paging of kernel stacks | FLG_DISABLE_PAGE_KERNEL_STACKS | 0x080000 | dps | R |
Disable protected DLL verification | FLG_DISABLE_PROTDLLS | 0x80000000 | dpd | R,K,I |
Disable stack extension | FLG_DISABLE_STACK_EXTENSION | 0x010000 | dse | I |
Early critical section event creation | FLG_CRITSEC_EVENT_CREATION | 0x10000000 | cse | R,K,I |
Enable application verifier | FLG_APPLICATION_VERIFIER | 0x0100 | vrf | R,K,I |
Enable bad handles detection | FLG_ENABLE_HANDLE_EXCEPTIONS | 0x40000000 | bhd | R,K |
Enable close exception | FLG_ENABLE_CLOSE_EXCEPTIONS | 0x400000 | ece | R,K |
Enable debugging of Win32 subsystem | FLG_ENABLE_CSRDEBUG | 0x020000 | d32 | R |
Enable exception logging | FLG_ENABLE_EXCEPTION_LOGGING | 0x800000 | eel | R,K |
Enable heap free checking | FLG_HEAP_ENABLE_FREE_CHECK | 0x20 | hfc | R,K,I |
Enable heap parameter checking | FLG_HEAP_VALIDATE_PARAMETERS | 0x40 | hpc | R,K,I |
Enable heap tagging | FLG_HEAP_ENABLE_TAGGING | 0x0800 | htg | R,K,I |
Enable heap tagging by DLL | FLG_HEAP_ENABLE_TAG_BY_DLL | 0x8000 | htd | R,K,I |
Enable heap tail checking | FLG_HEAP_ENABLE_TAIL_CHECK | 0x10 | htc | R,K,I |
Enable heap validation on call | FLG_HEAP_VALIDATE_ALL | 0x80 | hvc | R,K,I |
Enable loading of kernel debugger symbols | FLG_ENABLE_KDEBUG_SYMBOL_LOAD | 0x040000 | ksl | R,K |
Enable object handle type tagging | FLG_ENABLE_HANDLE_TYPE_TAGGING | 0x01000000 | eot | R,K |
Enable page heap | FLG_HEAP_PAGE_ALLOCS | 0x02000000 | hpa | R,K,I |
Enable pool tagging<br>(Windows 2000 and Windows XP only) | FLG_POOL_ENABLE_TAGGING | 0x0400 | ptg | R |
Enable system critical breaks | FLG_ENABLE_SYSTEM_CRIT_BREAKS | 0x100000 | scb | R, K, I |
Load image using large pages if possible | lpg | I | ||
Maintain a list of objects for each type | FLG_MAINTAIN_OBJECT_TYPELIST | 0x4000 | otl | R |
Enable silent process exit monitoring | FLG_MONITOR_SILENT_PROCESS_EXIT | 0x200 | R | |
Object Reference Tracing<br>(Windows Vista and later) | R, K | |||
Show loader snaps | FLG_SHOW_LDR_SNAPS | 0x02 | sls | R,K,I |
Special Pool | spp | R <br>R,K (Windows Vista and later) | ||
Stop on exception | FLG_STOP_ON_EXCEPTION | 0x01 | soe | R,K,I |
Stop on hung GUI | FLG_STOP_ON_HUNG_GUI | 0x08 | shg | K |
Stop on unhandled user-mode exception | FLG_STOP_ON_UNHANDLED_EXCEPTION | 0x20000000 | sue | R,K,I |
上面逆向Rtl得到的值是0x100000
,它对应是Enable system critical breaks
,微软官方对它的解释为:The Enable system critical breaks flag forces a system break into the debugger,大致意思是如果开启它,则可以强制产生一个中断让系统进入内核调试器。
这里a3咱们传的值为False直接跳过了,若为True,则会检查是否Enable system critical breaks
,如果没有开启则直接返回。这里返回值的含义是C0000001: 连到系统上的设备没有发挥作用。
NtGlobalFlags
的很多值都有研究的价值可以用来反调试,这里不再展开,感兴趣的可以自行研究。
0x04 NtSetInformationProcess/Thread的逆向分析
从上面就可以看出NtSetInformationProcess
和NtSetInformationThread
是具有高度对称性的,代码应该也是差不多的。
NtSetInformationProcess(-1,0x1D,P3,4)
LABEL_46做了清理工作,减少了EPROCESS的引用计数。可以看见如何将进程设置为Critical Process——将EPROCESS.Flags.BreakOnTermination(Pos 13)
位 置1
NtSetInformationThread(-2,18,P3,4)
同样地,LABEL_48做了清理工作,减少引用计数。可以看见如何将线程设置为Critical Thread——将ETHREAD.CrossThreadFlags.BreakOnTermination(Pos 5)
位 置1
至此可以总结出它们的方式:只用分别设置自己的BreakOnTermination
位即可
0x05 Critical Process蓝屏实现
上文主要讲了“地位”的提升,接下来就是选择哪个函数结束本进程的问题,我这里使用2个,其实最后都是调用nt!NtTerminateProcess
。
1.代码实现
由于Rtl只是封装,Nt才是本质,所以在代码中我只写Nt的部分,对于Rtl的使用,可以翻到下面看完整项目。
#include <stdio.h>
#include <windows.h>
const ULONG SE_DEBUG_PRIVILEGE = 20;
typedef enum _PROCESSINFOCLASS
{
ProcessBasicInformation, //0
ProcessQuotaLimits, //1
ProcessIoCounters, //2
ProcessVmCounters, //3
ProcessTimes, //4
ProcessBasePriority, //5
ProcessRaisePriority, //6
ProcessDebugPort, //7
ProcessExceptionPort, //8
ProcessAccessToken, //9
ProcessLdtInformation, //10
ProcessLdtSize, //11
ProcessDefaultHardErrorMode, //12
ProcessIoPortHandlers, //13
ProcessPooledUsageAndLimits, //14
ProcessWorkingSetWatch, //15
ProcessUserModeIOPL, //16
ProcessEnableAlignmentFaultFixup, //17
ProcessPriorityClass, //18
ProcessWx86Information, //19
ProcessHandleCount, //20
ProcessAffinityMask, //21
ProcessPriorityBoost, //22
ProcessDeviceMap, //23
ProcessSessionInformation, //24
ProcessForegroundInformation, //25
ProcessWow64Information, //26
ProcessImageFileName, //27
ProcessLUIDDeviceMapsEnabled, //28
ProcessBreakOnTermination, //29 0x1D
ProcessDebugObjectHandle, //30
ProcessDebugFlags, //31
ProcessHandleTracing, //32
ProcessIoPriority, //33
ProcessExecuteFlags, //34
ProcessTlsInformation, //35
ProcessCookie, //36
ProcessImageInformation, //37
ProcessCycleTime, //38
ProcessPagePriority, //39
ProcessInstrumentationCallback, //40
ProcessThreadStackAllocation, //41
ProcessWorkingSetWatchEx, //42
ProcessImageFileNameWin32, //43
ProcessImageFileMapping, //44
ProcessAffinityUpdateMode, //45
ProcessMemoryAllocationMode, //46
MaxProcessInfoClass //47
} PROCESSINFOCLASS;
// 函数指针
typedef NTSYSCALLAPI NTSTATUS(WINAPI *NTSETINFORMATIONPROCESS)(
IN HANDLE ProcessHandle,
IN PROCESSINFOCLASS ProcessInformationClass,
IN PVOID ProcessInformation,
IN ULONG ProcessInformationLength
);
typedef BOOL(__cdecl *RTLADJUSTPRIVILEGE)(ULONG, BOOL, BOOL, PBOOLEAN);
NTSETINFORMATIONPROCESS NtSetInformationProcess;
RTLADJUSTPRIVILEGE RtlAdjustPrivilege;
int main()
{
// 任何进程都会自动加载ntdll
HMODULE NtBase = GetModuleHandle(TEXT("ntdll.dll"));
if (!NtBase) return false;
// 获取各函数地址
NtSetInformationProcess = (NTSETINFORMATIONPROCESS)GetProcAddress(NtBase, "NtSetInformationProcess");
RtlAdjustPrivilege = (RTLADJUSTPRIVILEGE)GetProcAddress(NtBase, "RtlAdjustPrivilege");
BOOLEAN A;
BOOL Enable = TRUE;
// RtlAdjustPrivilege返回值为0才成功
if (RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE, TRUE, FALSE, &A))
{
printf("------Please run program as an Administrator------\n");
system("pause");
return FALSE;
}
// 设置本进程为Critical Process
NtSetInformationProcess(GetCurrentProcess(), ProcessBreakOnTermination, &Enable, sizeof(Enable));
// 退出
ExitProcess(0);
//TerminateProcess((HANDLE)-1, 0);
return 0;
}
2.流程分析
首先不附加内核调试器,直接蓝。
恢复快照,随后附加一下Windbg,再运行,出现一个Input,让你输入,输入B(b)则windbg会接收到一个断点,输入I(i),则会忽略该错误继续运行,栈回溯看一下。
看来就是这个函数导致蓝屏,若附加内核调试器,则会被调试器接收,否则会直接蓝屏,接下来看看这个函数的执行流程。
3.PspCatchCriticalBreak
这个函数在Win11中与Win10中稍有不同,对于内核调试而言,在Win10中仅有Break(B,b),Ignore(I,i)两种选择,这两种选择都无法造成蓝屏,而在Win11中新增了Continue(C,c)选项
,选择C则会导致蓝屏。
ETHREAD & 0x7F取了当前对象的类型,咱们这里是Critical Process
,因此当然是EPROCESS。我这里为了方便直接将其重命名为EPROCESS,实际情况还是根据传进来的对象来判断是进程还是线程。
最后调用了KeBugCheckEx()
实现蓝屏。通过栈回溯咱们知道前面还有2个函数,nt!PspTerminateAllThreads
和nt!NtTerminateProcess
,大家应该都能猜到肯定是检查了EPROCESS的BreakOnTermination
位才进入PspCatchCriticalBreak
,但是这俩函数还是和后面的线程一起分析比较好。
0x06 思考
首先提出猜想:既然进程能像上面那样操作,先设置,再退出。那么线程是否可以呢?直接写代码开始测试
#include <stdio.h>
#include <windows.h>
const ULONG SE_DEBUG_PRIVILEGE = 20;
typedef enum _THREADINFOCLASS
{
ThreadBasicInformation, //0
ThreadTimes, //1
ThreadPriority, //2
ThreadBasePriority, //3
ThreadAffinityMask, //4
ThreadImpersonationToken, //5
ThreadDescriptorTableEntry, //6
ThreadEnableAlignmentFaultFixup, //7
ThreadEventPair_Reusable, //8
ThreadQuerySetWin32StartAddress, //9
ThreadZeroTlsCell, //10
ThreadPerformanceCount, //11
ThreadAmILastThread, //12
ThreadIdealProcessor, //13
ThreadPriorityBoost, //14
ThreadSetTlsArrayAddress, //15
ThreadIsIoPending, //16
ThreadHideFromDebugger, //17
ThreadBreakOnTermination, //18 0x12
ThreadSwitchLegacyState, //19
ThreadIsTerminated, //20
ThreadLastSystemCall, //21
ThreadIoPriority, //22
ThreadCycleTime, //23
ThreadPagePriority, //24
ThreadActualBasePriority, //25
ThreadTebInformation, //26
ThreadCSwitchMon, //27
MaxThreadInfoClass //28
} THREADINFOCLASS;
// 函数指针
typedef NTSYSCALLAPI NTSTATUS(WINAPI *NTSETINFORMATIONTHREAD)(
HANDLE ThreadHandle,
THREADINFOCLASS ThreadInformationClass,
PVOID ThreadInformation,
ULONG ThreadInformationLength
);
typedef BOOL(__cdecl *RTLADJUSTPRIVILEGE)(ULONG, BOOL, BOOL, PBOOLEAN);
NTSETINFORMATIONTHREAD NtSetInformationThread;
RTLADJUSTPRIVILEGE RtlAdjustPrivilege;
int main()
{
// 任何进程都会自动加载ntdll
HMODULE NtBase = GetModuleHandle(TEXT("ntdll.dll"));
if (!NtBase) return false;
// 获取各函数地址
NtSetInformationThread = (NTSETINFORMATIONTHREAD)GetProcAddress(NtBase, "NtSetInformationThread");
RtlAdjustPrivilege = (RTLADJUSTPRIVILEGE)GetProcAddress(NtBase, "RtlAdjustPrivilege");
BOOLEAN A;
BOOL Enable = TRUE;
// RtlAdjustPrivilege返回值为0才成功
if (RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE, TRUE, FALSE, &A))
{
printf("------Please run program as an Administrator------\n");
system("pause");
return FALSE;
}
// 设置本进程为Critical Process
NtSetInformationThread(GetCurrentThread(), ThreadBreakOnTermination, &Enable, sizeof(Enable));
// 退出
ExitProcess(0);
//TerminateProcess((HANDLE)-1, 0);
}
很遗憾,执行了一下发现并没有蓝屏,这也是网上经常出现的代码,很多人在各论坛里抄来抄去,却不知道这段代码根本不好使。我觉得这段代码应该是XP时期的,因为它在XP下是可以蓝的。
这代码乍一看,确实觉得没问题,退出进程不就会退出所有的线程吗?那么退出线程里检测到BreakOnTermination为1就应该蓝屏啊。
继续猜测:第一个参数传的是-2,当前线程即主线程。莫非是主线程不能作为Critical Therad
?那么我将所有线程全部设成Critical Therad
呢?
我这里用vs2015选择x64 Release版本,这样子设置程序就会有4个线程(如果没有的话,可以自己多创建几个线程),方便进行测试
#include <stdio.h>
#include <windows.h>
#include <tlhelp32.h>
const ULONG SE_DEBUG_PRIVILEGE = 20;
typedef enum _THREADINFOCLASS
{
ThreadBasicInformation, //0
ThreadTimes, //1
ThreadPriority, //2
ThreadBasePriority, //3
ThreadAffinityMask, //4
ThreadImpersonationToken, //5
ThreadDescriptorTableEntry, //6
ThreadEnableAlignmentFaultFixup, //7
ThreadEventPair_Reusable, //8
ThreadQuerySetWin32StartAddress, //9
ThreadZeroTlsCell, //10
ThreadPerformanceCount, //11
ThreadAmILastThread, //12
ThreadIdealProcessor, //13
ThreadPriorityBoost, //14
ThreadSetTlsArrayAddress, //15
ThreadIsIoPending, //16
ThreadHideFromDebugger, //17
ThreadBreakOnTermination, //18 0x12
ThreadSwitchLegacyState, //19
ThreadIsTerminated, //20
ThreadLastSystemCall, //21
ThreadIoPriority, //22
ThreadCycleTime, //23
ThreadPagePriority, //24
ThreadActualBasePriority, //25
ThreadTebInformation, //26
ThreadCSwitchMon, //27
MaxThreadInfoClass //28
} THREADINFOCLASS;
// 函数指针
typedef NTSYSCALLAPI NTSTATUS(WINAPI *NTSETINFORMATIONTHREAD)(
HANDLE ThreadHandle,
THREADINFOCLASS ThreadInformationClass,
PVOID ThreadInformation,
ULONG ThreadInformationLength
);
typedef BOOL(__cdecl *RTLADJUSTPRIVILEGE)(ULONG, BOOL, BOOL, PBOOLEAN);
NTSETINFORMATIONTHREAD NtSetInformationThread;
RTLADJUSTPRIVILEGE RtlAdjustPrivilege;
int main()
{
// 任何进程都会自动加载ntdll
HMODULE NtBase = GetModuleHandle(TEXT("ntdll.dll"));
if (!NtBase) return false;
// 获取各函数地址
NtSetInformationThread = (NTSETINFORMATIONTHREAD)GetProcAddress(NtBase, "NtSetInformationThread");
RtlAdjustPrivilege = (RTLADJUSTPRIVILEGE)GetProcAddress(NtBase, "RtlAdjustPrivilege");
BOOLEAN A;
BOOL Enable = TRUE;
// RtlAdjustPrivilege返回值为0才成功
if (RtlAdjustPrivilege(SE_DEBUG_PRIVILEGE, TRUE, FALSE, &A))
{
printf("------Please run program as an Administrator------\n");
system("pause");
return FALSE;
}
// 将所有线程设置为Critical Therad
// 拍摄快照,该快照拥有拍摄时刻的所有进程和线程信息
HANDLE Snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, NULL);
THREADENTRY32 te32;
// 在使用 Thread32First 前初始化 THREADENTRY32 的结构大小.
te32.dwSize = sizeof(THREADENTRY32);
// 获取第一个线程
if (Thread32First(Snapshot, &te32))
{
ULONG PID = GetCurrentProcessId();
HANDLE ThreadHandle = NULL;
te32.dwSize = sizeof(te32);
do
{
ThreadHandle = OpenThread(THREAD_ALL_ACCESS,FALSE,te32.th32ThreadID);
// 如果线程属于本进程 则将其设置为Critical Thread
if (PID == te32.th32OwnerProcessID)
{
NTSTATUS status = NtSetInformationThread(ThreadHandle, ThreadBreakOnTermination, &Enable, sizeof(Enable));
printf("线程ID为%X\n",te32.th32ThreadID);
}
// 直至遍历完所有线程
} while (Thread32Next(Snapshot, &te32));
}
// 退出
ExitProcess(0);
//TerminateProcess((HANDLE)-1, 0);
}
仍然没有蓝屏,是不是没有设置成功呢?用Windbg看一下四个线程的位置
四个线程的BreakOnTermination确实已经置1,却还是没有蓝屏。
看来上面那些都不是蓝屏的重点。尽管没有猜出它蓝屏的条件,但是这种猜测是完全有必要的,有时候能节省不少时间,不能像无头苍蝇一样冲进去就开逆,有时候这样会适得其反,逆向时最重要的就是带着自己的想法和目的去逆,把所有代码都看一遍是不可能的。在这里为大家抛出这些疑问,下一节将带着这些疑问进一步探索Critical Therad
的秘密。
0x07 总结
本篇主要讲解了Critical Process/Thread是如何被设置的,Process又是如何导致蓝屏的,介绍了其中的一些重要结构和类型,最终解决了问题1和问题2,经过一些探索又对Critical Thread产生了疑问,下篇文章将为大家解答这些疑问。